New Keynesian Model: (Un)Conventional Monetary Policy

Andrey Alexandrov (Tor Vergata University of Rome)

Markus Brunnermeier (Princeton University)

September 6, 2025

▶ What should we add to study optimal (un)conventional monetary policy?

- ▶ What should we add to study optimal (un)conventional monetary policy?
 - ► Sticky prices ⇒ output gap management role of interest rate policy

- ▶ What should we add to study optimal (un)conventional monetary policy?
 - lacktriangle Sticky prices \Longrightarrow output gap management role of interest rate policy
 - ▶ Nominal wealth: reserves + long-term gov. bonds ⇒ balance sheet policies

- What should we add to study optimal (un)conventional monetary policy?
 - ▶ Sticky prices ⇒ output gap management role of interest rate policy
 - ▶ Nominal wealth: reserves + long-term gov. bonds ⇒ balance sheet policies
 - Financial intermediary sector
 - Financial sector holds CB reserves, issues deposits to households
 - Distributional roles of interest rate and balance sheet policies

- What should we add to study optimal (un)conventional monetary policy?
 - ▶ Sticky prices ⇒ output gap management role of interest rate policy
 - ▶ Nominal wealth: reserves + long-term gov. bonds ⇒ balance sheet policies
 - Financial intermediary sector
 - Financial sector holds CB reserves, issues deposits to households
 - Distributional roles of interest rate and balance sheet policies
- Central bank conducting:
 - Short-term interest rate policy
 - Balance sheet management: exchanging long-term gov. bonds and reserves

- What should we add to study optimal (un)conventional monetary policy?
 - ▶ Sticky prices ⇒ output gap management role of interest rate policy
 - ▶ Nominal wealth: reserves + long-term gov. bonds ⇒ balance sheet policies
 - Financial intermediary sector
 - Financial sector holds CB reserves, issues deposits to households
 - Distributional roles of interest rate and balance sheet policies
- Central bank conducting:
 - Short-term interest rate policy
 - ▶ Balance sheet management: exchanging long-term gov. bonds and reserves
- What role does each instrument play? How do they interact?
- ▶ What is the welfare-maximizing policy mix?

- What should we add to study optimal (un)conventional monetary policy?
 - ▶ Sticky prices ⇒ output gap management role of interest rate policy
 - ▶ Nominal wealth: reserves + long-term gov. bonds ⇒ balance sheet policies
 - Financial intermediary sector
 - Financial sector holds CB reserves, issues deposits to households
 - Distributional roles of interest rate and balance sheet policies
- Central bank conducting:
 - Short-term interest rate policy
 - Balance sheet management: exchanging long-term gov. bonds and reserves
- What role does each instrument play? How do they interact?
- ► What is the welfare-maximizing policy mix?
- We will extend the one-sector money model step by step

Recall: One Sector Monetary Model

► Households solve:

$$\begin{aligned} \max_{c_t^H, \iota_t, \theta_t^K} \mathbb{E}\left[\int_0^\infty e^{-\rho t} \log(c_t^H) dt\right] & \text{s.t.} \\ \frac{dn_t^H}{n_t^H} &= -\frac{c_t^H}{n_t^H} dt + (1 - \theta_t^K) dr_t^B + \theta_t^K dr_t^K(\iota_t) \\ dr_t^B &= (i_t - \pi_t) dt - \sigma_t^P dZ_t \\ dr_t^K(\iota_t) &= \left(\frac{a - \iota_t - \tau_t^K}{q_t^K} + \mu_t^{q^K} + \Phi(\iota_t) - \delta\right) dt + \tilde{\sigma}_t d\tilde{Z}_t + \sigma_t^{q^K} dZ_t \\ d\tilde{\sigma}_t^2 &= -\psi(\tilde{\sigma}_t^2 - \tilde{\sigma}_{ss}^2) dt + \sigma \tilde{\sigma}_t^2 dZ_t \end{aligned}$$

- Standard setup with monopolistic firms
- ightharpoonup Households produce a common input good y_t
- ▶ Monopolistic producers $j \in [0, 1]$ create its varieties Y_t^j
- Final good producer bundles varieties into consumption good:

$$Y_t = \left(\int_0^1 \left(Y_t^j\right)^{\frac{\varepsilon-1}{\varepsilon}} dj\right)^{\frac{\varepsilon}{\varepsilon-1}}$$

Demand function:

$$Y_t^j = \left(\frac{P_t^j}{\mathcal{P}_t}\right)^{-\varepsilon} Y_t$$

▶ Sticky prices require an additional margin of supply adjustment to clear markets

- ▶ Sticky prices require an additional margin of supply adjustment to clear markets
 - ► Textbook NK models: variable labor supply
 - ► We employ: capital utilization

- ▶ Sticky prices require an additional margin of supply adjustment to clear markets
 - ► Textbook NK models: variable labor supply
 - ► We employ: capital utilization
- lacktriangle Households choose capital utilization level v_t and produce input good av_tk_t

- Sticky prices require an additional margin of supply adjustment to clear markets
 - Textbook NK models: variable labor supply
 - We employ: capital utilization
- lacktriangle Households choose capital utilization level v_t and produce input good av_tk_t
- Sell it to monopolistic firms at price p_t

$$dr_t^K(\iota_t, v_t) = \left(\frac{p_t a v_t - \iota_t - \tau_t^K + \mathbf{0}_t}{q_t^K} + \mu_t^{q^K} + \Phi(\iota_t) - \delta\right) dt + \tilde{\sigma}_t d\tilde{Z}_t + \sigma_t^{q^K} dZ_t$$

ightharpoonup are dividends from monopolistic firms

- Sticky prices require an additional margin of supply adjustment to clear markets
 - ► Textbook NK models: variable labor supply
 - We employ: capital utilization
- \blacktriangleright Households choose capital utilization level v_t and produce input good av_tk_t
- Sell it to monopolistic firms at price p_t

$$dr_t^K(\iota_t, \boldsymbol{v}_t) = \left(\frac{p_t a \boldsymbol{v}_t - \iota_t - \tau_t^K + \boldsymbol{\mathfrak{d}}_t}{q_t^K} + \mu_t^{q^K} + \Phi(\iota_t) - \delta\right) dt + \tilde{\sigma}_t d\tilde{Z}_t + \sigma_t^{q^K} dZ_t$$

- ightharpoonup are dividends from monopolistic firms
- ▶ Utilization has a convex utility cost $b(v_t)$: $\log(c_t) b(v_t)$

- lacktriangle Continuum of monopolistic firms with linear technology $Y_t^j=y_t^j$
- $lackbox{ Adjust prices } dP_t^j = \pi_t^j P_t^j dt ext{ subject to a Rotemberg cost } rac{\kappa}{2} \left(\pi_t^j
 ight)^2 Y_t dt$

- lacktriangle Continuum of monopolistic firms with linear technology $Y_t^j=y_t^j$
- Adjust prices $dP_t^j = \pi_t^j P_t^j dt$ subject to a Rotemberg cost $\frac{\kappa}{2} \left(\pi_t^j \right)^2 Y_t dt$
- Flow profits:

$$\frac{P_t^j Y_t^j}{\mathcal{P}_t} - p_t (1 - \tau_t) y_t^j$$

- lacktriangle Continuum of monopolistic firms with linear technology $Y_t^j=y_t^j$
- Adjust prices $dP_t^j = \pi_t^j P_t^j dt$ subject to a Rotemberg cost $\frac{\kappa}{2} \left(\pi_t^j \right)^2 Y_t dt$
- ► Flow profits:

$$\frac{P_t^j Y_t^j}{\mathcal{P}_t} - p_t (1 - \tau_t) y_t^j$$

Objective function:

$$\max_{\pi_t^j} \int_0^\infty \Xi_t^H \left[\left(\frac{P_t^j}{\mathcal{P}_t} \right)^{1-\varepsilon} - p_t (1-\tau_t) \left(\frac{P_t^j}{\mathcal{P}_t} \right)^{-\varepsilon} - \frac{\kappa}{2} \left(\pi_t^j \right)^2 - T_t \right] Y_t dt$$

- lacktriangle Consider a symmetric equilibrium $(P_t^j = \mathcal{P}_t)$
- Derive the New Keynesian Phillips Curve:

$$\pi_t = \frac{\varepsilon}{\kappa Y_t} \mathbb{E}_t \int_t^{\infty} e^{-\int_t^s r_{\tau}^f d\tau} Y_s \left(mc_s - mc^f \right) ds$$

- $ightharpoonup mc_s = p_s(1- au_s)$ is the real marginal cost
- $ightharpoonup mc^f = rac{arepsilon 1}{arepsilon}$ is the flex-price real marginal cost

- lacktriangle Consider a symmetric equilibrium $(P_t^j=\mathcal{P}_t)$
- Derive the New Keynesian Phillips Curve:

$$\pi_{t} = \frac{\varepsilon}{\kappa Y_{t}} \mathbb{E}_{t} \int_{t}^{\infty} e^{-\int_{t}^{s} r_{\tau}^{f} d\tau} Y_{s} \left(mc_{s} - mc^{f} \right) ds$$

- $ightharpoonup mc_s = p_s(1-\tau_s)$ is the real marginal cost
- $ightharpoonup mc^f = rac{arepsilon 1}{arepsilon}$ is the flex-price real marginal cost
- $ightharpoonup \mathcal{P}_t$ drifts with π_t and does not load on dZ_t ($\sigma_t^{\mathcal{P}}=0$): $d\mathcal{P}_t=\pi_t\mathcal{P}_tdt$

Introducing Intermediaries

- \triangleright Households issue risky claims on capital and offload fraction χ_t of risk
- ▶ Intermediaries hold these claims and diversify idiosyncratic risk to $\varphi \in (0,1)$

Introducing Intermediaries

- \triangleright Households issue risky claims on capital and offload fraction χ_t of risk
- Intermediaries hold these claims and diversify idiosyncratic risk to $\varphi \in (0,1)$

$$\begin{aligned} \max_{c_t^I, \theta_t^B, \theta_t^{D,I}, \theta_t^{\times,I}} \mathbb{E}\left[\int_0^\infty e^{-\rho t} \log(c_t^I) dt\right] & \text{s.t.} \\ \frac{dn_t^I}{n_t^I} &= -\frac{c_t^I}{n_t^I} dt + \theta_t^B dr_t^B + \theta_t^{D,I} dr_t^D + \theta_t^{\times,I} dr_t^{\times,I} \\ 1 &= \theta_t^B + \theta_t^{D,I} + \theta_t^{\times,I} \\ dr_t^B &= (i_t - \pi_t) dt \qquad dr_t^D = (i_t^D - \pi_t) dt \\ dr_t^{\times,I} &= r_t^{\times} dt + \sigma_t^{q^K} dZ_t + \varphi \tilde{\sigma}_t d\tilde{Z}_t \end{aligned}$$

Introducing Intermediaries

- \triangleright Households issue risky claims on capital and offload fraction χ_t of risk
- Intermediaries hold these claims and diversify idiosyncratic risk to $\varphi \in (0,1)$

$$\begin{aligned} \max_{c_t^I, \theta_t^B, \theta_t^{D,I}, \theta_t^{\times,I}} \mathbb{E}\left[\int_0^\infty e^{-\rho t} \log(c_t^I) dt\right] & \text{s.t.} \\ \frac{dn_t^I}{n_t^I} &= -\frac{c_t^I}{n_t^I} dt + \theta_t^B dr_t^B + \theta_t^{D,I} dr_t^D + \theta_t^{\times,I} dr_t^{\times,I} \\ 1 &= \theta_t^B + \theta_t^{D,I} + \theta_t^{\times,I} \\ dr_t^B &= (i_t - \pi_t) dt \qquad dr_t^D = (i_t^D - \pi_t) dt \\ dr_t^{\times,I} &= r_t^{\times} dt + \sigma_t^{q^K} dZ_t + \varphi \tilde{\sigma}_t d\tilde{Z}_t \end{aligned}$$

► For comparison: $dr_t^{x,H} = r_t^x dt + \sigma_t^{q^K} dZ_t + \tilde{\sigma}_t d\tilde{Z}_t$

lacktriangle Relabel short-term bonds as "reserves" \mathcal{R}_t , only allow intermediaries to hold them

$$dr_t^{\mathcal{R}} = (i_t - \pi_t)dt$$

▶ Relabel short-term bonds as "reserves" \mathcal{R}_t , only allow intermediaries to hold them

$$dr_t^{\mathcal{R}} = (i_t - \pi_t)dt$$

▶ Long-term bonds L_t are perpetual, pay fixed nominal interest i^L and have nominal price P_t^L ; all agents can hold them:

$$dr_t^L = \frac{i^L}{P_t^L}dt + \frac{d(P_t^L/\mathcal{P}_t)}{P_t^L/\mathcal{P}_t} = \left[\frac{i^L}{P_t^L} + \mu_t^{P^L} - \pi_t\right]dt + \sigma_t^{P^L}dZ_t$$

▶ Relabel short-term bonds as "reserves" \mathcal{R}_t , only allow intermediaries to hold them

$$dr_t^{\mathcal{R}} = (i_t - \pi_t)dt$$

▶ Long-term bonds L_t are perpetual, pay fixed nominal interest i^L and have nominal price P_t^L ; all agents can hold them:

$$dr_t^L = \frac{i^L}{P_t^L}dt + \frac{d(P_t^L/\mathcal{P}_t)}{P_t^L/\mathcal{P}_t} = \left[\frac{i^L}{P_t^L} + \mu_t^{P^L} - \pi_t\right]dt + \sigma_t^{P^L}dZ_t$$

Nominal wealth is now $\mathcal{B}_t = \mathcal{R}_t + P_t^L L_t$

Last element: wedge between deposits and long-term bonds

- Last element: wedge between deposits and long-term bonds
- lacktriangle Households use deposits for transactions related to capital with velocity u_t :

$$\theta_t^K = \frac{\mathbf{v_t}}{\theta_t^{D,H}}$$

lacktriangle Higher velocity \Longrightarrow higher transaction cost $\mathfrak{t}(
u_t)$

$$dr_t^K(\iota_t, v_t, \frac{v_t}{v_t}) = \left[\frac{p_t a v_t - \iota_t - \tau_t^K + \mathfrak{d}_t}{q_t^K} - \frac{\mathfrak{t}(v_t)}{t} + \mu_t^{q^K} + \Phi(\iota_t) - \delta\right] dt + \sigma_t^{q^K} dZ_t + \tilde{\sigma}_t d\tilde{Z}_t$$

- Last element: wedge between deposits and long-term bonds
- lacktriangle Households use deposits for transactions related to capital with velocity u_t :

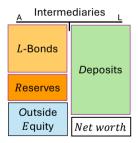
$$\theta_t^K = \frac{\nu_t}{\nu_t} \theta_t^{D,H}$$

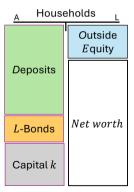
ightharpoonup Higher velocity \Longrightarrow higher transaction cost $\mathfrak{t}(
u_t)$

$$dr_t^K(\iota_t, \upsilon_t, \frac{\nu_t}{\nu_t}) = \left[\frac{p_t a \upsilon_t - \iota_t - \tau_t^K + \mathfrak{d}_t}{q_t^K} - \frac{\mathfrak{t}(\nu_t)}{t} + \mu_t^{q^K} + \Phi(\iota_t) - \delta\right] dt + \sigma_t^{q^K} dZ_t + \tilde{\sigma}_t d\tilde{Z}_t$$

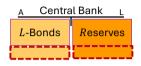
Prevents agents from hedging each other against aggregate risk

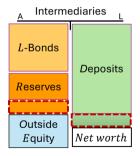
Balance Sheets

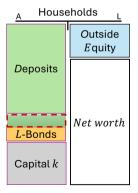




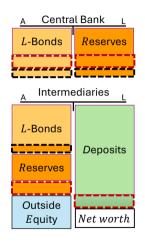
Balance Sheet Management: L-Bond purchases from Households

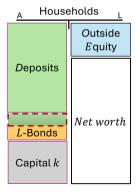






Balance Sheet Management: L-Bond purchases from HH & Banks





▶ Suppose the government raises taxes over time (flow/dt taxes) and in response to aggregate shocks (loading on dZ_t), but not to idios. shocks (not on $d\tilde{Z}_t$)

- ▶ Suppose the government raises taxes over time (flow/dt taxes) and in response to aggregate shocks (loading on dZ_t), but not to idios. shocks (not on $d\tilde{Z}_t$)
- Behaves as a planner that can freely set:
 - lacktriangle Capital utilization rate v_t
 - ightharpoonup Capital investment rate ι_t
 - lacktriangle Distribution of wealth/consumption across sectors $\eta_t = N_t^I/N_t$,
 - ▶ Distribution of wealth across assets $\vartheta_t = \mathcal{B}_t/(\mathcal{P}_t N_t) = (\mathcal{R}_t + P_t^L L_t)/(\mathcal{P}_t N_t)$
 - **Distribution** of idiosyncratic risk exposure χ_t

► Planner's objective:

$$\begin{split} \max_{\{\iota_t,\upsilon_t,\vartheta_t,\eta_t,\chi_t\}_{t=0}^{\infty}} \lambda \mathbb{E} \int_0^{\infty} e^{-\rho t} \log(\tilde{\eta}_t^I \eta_t c_t K_t) dt + (1-\lambda) \mathbb{E} \int_0^{\infty} e^{-\rho t} \left(\log(\tilde{\eta}_t^H (1-\eta_t) c_t K_t) - b(\upsilon_t) \right) dt \\ \text{s.t. } c_t &= a\upsilon_t - \iota_t = \rho \frac{q_t^K}{1-\vartheta_t}, \qquad q_t^K = (1+\phi\iota_t) \\ \frac{d\tilde{\eta}_t^I}{\tilde{\eta}_t^I} &= \chi_t \frac{1-\vartheta_t}{\eta_t} \varphi \tilde{\sigma}_t d\tilde{Z}_t, \qquad \frac{d\tilde{\eta}_t^H}{\tilde{\eta}_t^H} = (1-\chi_t) \frac{1-\vartheta_t}{1-\eta_t} \tilde{\sigma}_t d\tilde{Z}_t \end{split}$$

Planner's objective can be simplified to a static one

$$\max_{\upsilon_{t},\iota_{t},\eta_{t},\chi_{t},\vartheta_{t}} W_{t} = \overbrace{\log(a\upsilon_{t}-\iota_{t}) - (1-\lambda)b(\upsilon_{t}) + \frac{1}{\rho}\left(\frac{1}{\phi}\log(1+\phi\iota_{t}) - \delta\right)}^{\operatorname{aggregate efficiency at } t} \\ + \underbrace{\lambda\log(\eta_{t}) + (1-\lambda)\log(1-\eta_{t}) - \frac{\tilde{\sigma}_{t}^{2}}{2\rho}\left[\lambda\frac{\chi_{t}^{2}}{\eta_{t}^{2}}\varphi^{2} + (1-\lambda)\frac{(1-\chi_{t})^{2}}{(1-\eta_{t})^{2}}\right](1-\vartheta_{t})^{2}}_{\operatorname{distributional efficiency at } t}$$

► Constrained efficient allocation $v^*(\tilde{\sigma})$, $\iota^*(\tilde{\sigma})$, $\eta^*(\tilde{\sigma})$, $\vartheta^*(\tilde{\sigma})$, $\chi^*(\tilde{\sigma})$

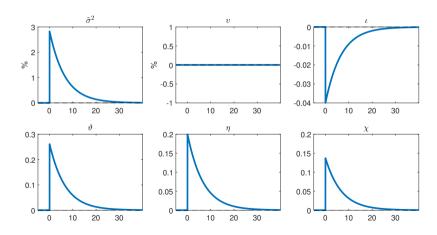
Constrained Efficiency

Planner's objective can be simplified to a static one

$$\max_{\upsilon_{t},\iota_{t},\eta_{t},\chi_{t},\vartheta_{t}} W_{t} = \overbrace{\log(a\upsilon_{t}-\iota_{t}) - (1-\lambda)b(\upsilon_{t}) + \frac{1}{\rho}\left(\frac{1}{\phi}\log(1+\phi\iota_{t}) - \delta\right)}^{\operatorname{aggregate efficiency at } t} \\ + \underbrace{\lambda\log(\eta_{t}) + (1-\lambda)\log(1-\eta_{t}) - \frac{\tilde{\sigma}_{t}^{2}}{2\rho}\left[\lambda\frac{\chi_{t}^{2}}{\eta_{t}^{2}}\varphi^{2} + (1-\lambda)\frac{(1-\chi_{t})^{2}}{(1-\eta_{t})^{2}}\right](1-\vartheta_{t})^{2}}_{\operatorname{distributional efficiency at } t}$$

- ► Constrained efficient allocation $v^*(\tilde{\sigma})$, $\iota^*(\tilde{\sigma})$, $\eta^*(\tilde{\sigma})$, $\vartheta^*(\tilde{\sigma})$, $\chi^*(\tilde{\sigma})$
- ▶ Optimal allocation: $1 > \chi^*(\tilde{\sigma}) > \eta^*(\tilde{\sigma}) > \lambda$

IRF Planner's Solution after $\tilde{\sigma}_t$ -Shock



• Aggregate efficiency requires that $\tilde{\sigma}_t^2 \uparrow \Longrightarrow \iota \downarrow$ and v_t constant

- ▶ Aggregate efficiency requires that $\tilde{\sigma}_t^2 \uparrow \Longrightarrow \iota \downarrow$ and v_t constant
- Goods market clearing + Tobin's q:

$$av_t - \iota_t = \rho \left(q_t^K + q_t^B \right) = \rho \left(q_t^K + \frac{\mathcal{R}_t + P_t^L L_t}{\mathcal{P}_t K_t} \right)$$
$$av_t = \rho + (1 + \rho \phi) \iota_t + \rho \frac{\mathcal{R}_t + P_t^L L_t}{\mathcal{P}_t K_t}$$

- Aggregate efficiency requires that $\tilde{\sigma}_t^2 \uparrow \Longrightarrow \iota \downarrow$ and v_t constant
- ► Goods market clearing + Tobin's q:

$$av_t - \iota_t = \rho \left(q_t^K + q_t^B \right) = \rho \left(q_t^K + \frac{\mathcal{R}_t + P_t^L L_t}{\mathcal{P}_t K_t} \right)$$
$$av_t = \rho + (1 + \rho \phi) \iota_t + \rho \frac{\mathcal{R}_t + P_t^L L_t}{\mathcal{P}_t K_t}$$

 $lackbox{ Output gap } \hat{Y}_t \equiv Y_t/Y_t^* = rac{av_t K_t}{av_t^* K_t^*}$:

$$\log \hat{Y}_t = \underbrace{\left(\log \upsilon_t - \log \upsilon_t^*\right)}_{\text{instantaneous}} + \underbrace{\left(\log \mathcal{K}_t - \log \mathcal{K}_t^*\right)}_{\text{dynamic}}$$

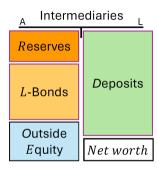
- Aggregate efficiency requires that $\tilde{\sigma}_t^2 \uparrow \Longrightarrow \iota \downarrow$ and v_t constant
- ► Goods market clearing + Tobin's q:

$$av_t - \iota_t = \rho \left(q_t^K + q_t^B \right) = \rho \left(q_t^K + \frac{\mathcal{R}_t + P_t^L L_t}{\mathcal{P}_t K_t} \right)$$
$$av_t = \rho + (1 + \rho \phi) \iota_t + \rho \frac{\mathcal{R}_t + P_t^L L_t}{\mathcal{P}_t K_t}$$

• Output gap $\hat{Y}_t \equiv Y_t/Y_t^* = \frac{av_t K_t}{av_t^* K_t^*}$:

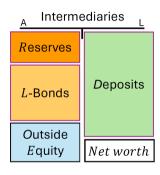
$$\log \hat{Y}_{t} = \underbrace{\left(\log v_{t} - \log v_{t}^{*}\right)}_{\text{instantaneous}} + \underbrace{\left(\log K_{t} - \log K_{t}^{*}\right)}_{\text{dynamic}}$$

- lacktriangle Sticky prices and no policy response \Longrightarrow either static or dynamic output gap
- Policy needs to move nominal wealth in response to an aggregate shock (see also Li and Merkel (2025))



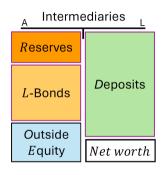
$$\underbrace{\eta_t \sigma_t^{\eta}}_{<0} = \underbrace{(\eta_t - \chi_t)}_{<0} \underbrace{\sigma_t^{\vartheta}}_{>0}$$

- ▶ Higher $\tilde{\sigma}_t^2 \Longrightarrow$ higher θ_t but lower η_t
- ► Intermediaries are short in nominal assets and long in capital ⇒ their net worth share decreases



$$\underbrace{\eta_t \sigma_t^{\eta}}_{<0} = \underbrace{(\eta_t - \chi_t)}_{<0} \underbrace{\sigma_t^{\vartheta}}_{>0}$$

- ▶ Higher $\tilde{\sigma}_t^2 \Longrightarrow$ higher θ_t but lower η_t
- ► Intermediaries are short in nominal assets and long in capital ⇒ their net worth share decreases
- ▶ Tension: flight-to-safety θ_t ↑ redistributes wealth away from intermediaries η_t ↓
- lacktriangle Tight link between wealth alloc. across assets (ϑ_t) and agents (η_t) in CE



$$\underbrace{\eta_t \sigma_t^{\eta}}_{<0} = \underbrace{(\eta_t - \chi_t)}_{<0} \underbrace{\sigma_t^{\vartheta}}_{>0}$$

- ▶ Higher $\tilde{\sigma}_t^2 \Longrightarrow$ higher ϑ_t but lower η_t
- ► Intermediaries are short in nominal assets and long in capital ⇒ their net worth share decreases
- ▶ Tension: flight-to-safety θ_t ↑ redistributes wealth away from intermediaries η_t ↓
- lacktriangle Tight link between wealth alloc. across assets (ϑ_t) and agents (η_t) in CE
- ▶ Policy needs to redistribute wealth in response to an aggregate shock

Realistic Government

► Central bank:

- ▶ Sets interest rates \underline{i}_t and i_t , reserve requirements $\underline{\theta}_t^R$
- lssues reserves $\frac{d\mathcal{R}_t}{\mathcal{R}_t} = \mu_t^{\mathcal{R}} dt + \sigma_t^{\mathcal{R}} dZ_t$
- ▶ Holds bonds $\frac{dL_t^{CB}}{L_t^{CB}} = \mu_t^{L,CB} dt + \sigma_t^{L,CB} dZ_t$

Realistic Government

Central bank:

- ▶ Sets interest rates \underline{i}_t and i_t , reserve requirements $\underline{\theta}_t^R$
- lssues reserves $\frac{d\mathcal{R}_t}{\mathcal{R}_t} = \mu_t^{\mathcal{R}} dt + \sigma_t^{\mathcal{R}} dZ_t$
- lacksquare Holds bonds $rac{dL_t^{CB}}{L_t^{CB}} = \mu_t^{L,CB} dt + \sigma_t^{L,CB} dZ_t$

Fiscal authority:

- lssues long-term bonds $dL_t^F = \mu_t^{L,F} L_t^F dt$ paying interest i^L , nominal price P_t^L
- Levies a range of 'flow' taxes (intermediation, wealth, capital)
- Motivation: bonds are issued at auctions, CB bond purchases/sales are OMO

Realistic Government

Central bank:

- ▶ Sets interest rates \underline{i}_t and i_t , reserve requirements $\underline{\theta}_t^R$
- lssues reserves $\frac{d\mathcal{R}_t}{\mathcal{R}_t} = \mu_t^{\mathcal{R}} dt + \sigma_t^{\mathcal{R}} dZ_t$
- lacksquare Holds bonds $rac{dL_t^{CB}}{L_t^{CB}}=\mu_t^{L,CB}dt+\sigma_t^{L,CB}dZ_t$

Fiscal authority:

- lssues long-term bonds $dL_t^F = \mu_t^{L,F} L_t^F dt$ paying interest i^L , nominal price P_t^L
- Levies a range of 'flow' taxes (intermediation, wealth, capital)
- Motivation: bonds are issued at auctions, CB bond purchases/sales are OMO
- lacktriangle Long-term bond holdings of private agents are $L_t^I + L_t^H = L_t = L_t^F L_t^{CB}$
- ▶ Distribution across sectors $\alpha_t = L_t^I/L_t$ is endogenous

Policy

- ► Focus on interest rate and balance sheet policy
- Fiscal policy operates in the background
- ▶ Balance sheet policy controls the share of long-term bonds in nominal wealth:

$$\vartheta_t^L = \frac{P_t^L L_t}{\mathcal{R}_t + P_t^L L_t} = \frac{P_t^L L_t}{\mathcal{B}_t}$$

► Interest rate controls sensitivity of bond price to aggregate shocks:

$$\sigma_t^{P^L} = \frac{\partial \log P_t^L}{\partial \log \tilde{\sigma}_t^2} \sigma, \qquad P_t^L = \mathbb{E}_t \int_t^{\infty} e^{-\int_t^{\tau} \left(i_s + \sigma_s^{P^L} \left(\sigma_s^{\eta} - \sigma_s^{\vartheta} + \sigma_s^{\mathcal{B}}\right)\right) ds} i^L d\tau$$

▶ Suppose $\vartheta_t^L = \vartheta^L \in (0,1)$

- ▶ Suppose $\vartheta_t^L = \vartheta^L \in (0,1)$
- ▶ **Proposition 1.** Fiscal + interest rate policy can implement aggregate efficiency:

$$\begin{aligned} & \textit{a} \upsilon_t^* = \rho + (1 + \rho \phi) \iota_t^* + \rho \frac{\mathcal{B}_t}{\mathcal{P}_t K_t} \\ & \mathcal{B}_t = \mathcal{R}_t + P_t^L L_t \qquad \sigma_t^{\mathcal{B}} = \vartheta^L \sigma_t^{P^L} = \underbrace{\frac{P_t^L L_t}{\mathcal{R}_t + P_t^L L_t}}_{\vartheta^L} \underbrace{\frac{\partial \log P_t^L}{\partial \log \tilde{\sigma}_t^2}}_{\text{interest rate } i_t} \sigma \end{aligned}$$

- ▶ Suppose $\vartheta_t^L = \vartheta^L \in (0,1)$
- ▶ **Proposition 1.** Fiscal + interest rate policy can implement aggregate efficiency:

$$\begin{aligned} av_t^* &= \rho + (1 + \rho\phi)\iota_t^* + \rho \frac{\mathcal{B}_t}{\mathcal{P}_t K_t} \\ \mathcal{B}_t &= \mathcal{R}_t + P_t^L L_t \qquad \sigma_t^{\mathcal{B}} = \vartheta^L \sigma_t^{P^L} = \underbrace{\frac{P_t^L L_t}{\mathcal{R}_t + P_t^L L_t}}_{\vartheta^L \quad \text{interest rate } i_t} \underbrace{\frac{\partial \log P_t^L}{\partial \log \tilde{\sigma}_t^2}}_{\text{interest rate } i_t} \sigma \end{aligned}$$

- ▶ Larger CB balance sheet (smaller ϑ^L) \Longrightarrow more aggressive interest rate policy
- Preparatory role of balance sheet management

► Can we also implement distributional efficiency?

- ► Can we also implement distributional efficiency?
- From intermediaries' balance sheet:

$$\eta_t^* \sigma_t^{\eta,*} = (\eta_t^* - \chi_t^*) \sigma_t^{\vartheta,*} + \underbrace{\alpha_t \vartheta_t^* \vartheta^L}_{L_t^l/N_t} \sigma_t^{P^L} + \underbrace{(\chi_t^* - \eta_t^* - \vartheta_t^* \chi_t^*)}_{(OE_t^l - N_t^l)/N_t} \vartheta^L \sigma_t^{P^L}$$

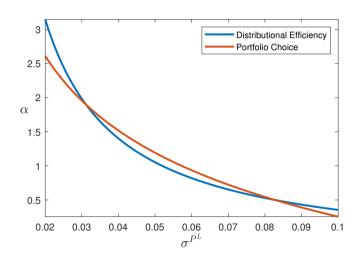
- ▶ Direct bond revaluation: $\frac{L_t^l}{N_t}\sigma_t^{P^L}$
- ▶ Indirect aggregate wealth effect: $\frac{OE_t^l N_t^l}{N_t} \vartheta^L \sigma_t^{P^L}$
 - ▶ For a fixed $\vartheta_t = \frac{\mathcal{B}/\mathcal{P}_t}{\mathcal{B}/\mathcal{P}_t + q_t^K K_t}$, $\mathcal{B}_t \uparrow \Longrightarrow q_t^K \uparrow$
 - Capital price increase benefits levered intermediaries

- ► Can we also implement distributional efficiency?
- ► From intermediaries' balance sheet:

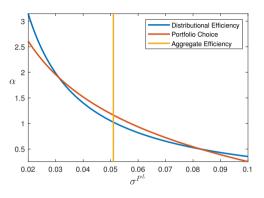
$$\eta_t^* \sigma_t^{\eta,*} = (\eta_t^* - \chi_t^*) \sigma_t^{\vartheta,*} + \alpha_t \vartheta_t^* \vartheta^L \sigma_t^{P^L} + (\chi_t^* - \eta_t^* - \vartheta_t^* \chi_t^*) \vartheta^L \sigma_t^{P^L}$$

- ightharpoonup Challenge: endogenous bond distribution α_t
- Bonds are anti-hedge for intermediaries
- ▶ Intermediaries scale down on bonds if they get more volatile (if $\sigma_t^{P^L} \uparrow$)

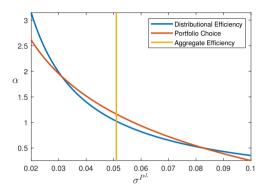
Distributional Efficiency Fixing ϑ^L



Aggregate and Distributional Efficiency Fixing ϑ^L

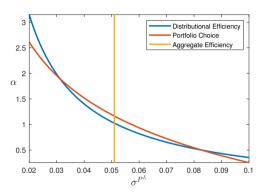


Aggregate and Distributional Efficiency Fixing ϑ^L



▶ Requires active balance sheet management!

Aggregate and Distributional Efficiency Fixing ϑ^L



- Requires active balance sheet management!
- Existence and uniqueness of an optimal policy mix under certain conditions
 - ▶ Intermediate degree of bond market segmentation

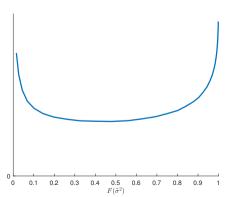
Passive balance sheet management: Welfare Loss

- Suppose pick ϑ^L such that $\sigma^\eta_{ss}=\sigma^{\eta,*}_{ss}$ and $\sigma^\upsilon_t=0$
- ▶ ⇒ efficient responses to shocks starting from the stochastic steady state

Passive balance sheet management: Welfare Loss

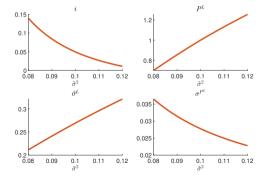
- Suppose pick ϑ^L such that $\sigma^\eta_{ss}=\sigma^{\eta,*}_{ss}$ and $\sigma^\upsilon_t=0$
- ▶ ⇒ efficient responses to shocks starting from the stochastic steady state

Figure: Welfare Loss



Optimal Policy Over the Cycle

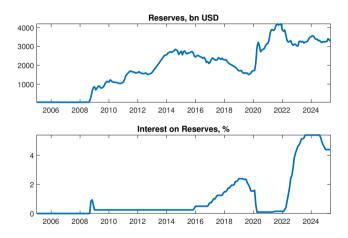
- **Proposition 2.** Let $\tilde{\sigma}_t^2$ be small. Then, an increase in $\tilde{\sigma}_t^2$ leads to:
 - \triangleright a cut in the interest rate i_t
 - ▶ a milder interest rate policy going forward (lower $\sigma_t^{P^L}$)
 - ightharpoonup a rebalancing towards long-term bonds (higher ϑ_t^L)



Summary

- Macrofinance model to study optimal policy mix
 - ► Role for aggregate and distributional efficiencies
- ▶ Preparatory role of balance sheet policies: efficient exposure to future shocks
- Larger CB balance sheet requires more aggressive interest rate policy subsequently
- Joint aggregate and distributional efficiency requires active balance sheet management over the cycle

Motivation



Back

Household's Problem

$$\begin{aligned} \max_{c_t^H, v_t, \iota_t, \nu_t, \theta_t^{D,H}, \theta_t^{L,H}, \theta_t^K, \chi_t} \mathbb{E} \left[\int_0^\infty e^{-\rho t} \left(\log(c_t^H) - b(v_t) \right) dt \right] & \text{s.t.} \\ \frac{dn_t^H}{n_t^H} &= -\frac{c_t^H}{n_t^H} dt + \theta_t^{D,H} dr_t^D + \theta_t^{L,H} dr_t^L + \theta_t^K \left(dr_t^K(v_t, \iota_t, \nu_t) - \chi_t dr_t^{X,H} \right) + \tau_t^H dt \\ 1 &= \theta_t^{D,H} + \theta_t^{L,H} + \theta_t^K (1 - \chi_t) \qquad \nu_t \theta_t^{D,H} = \theta_t^K \end{aligned}$$

Intermediary's Problem

$$\begin{split} \max_{\substack{c_t^I, \theta_t^{\mathcal{R}}, \theta_t^{L,I}, \theta_t^{D,I}, \theta_t^{\times,I} \\ \boldsymbol{n}_t^I = -\frac{c_t^I}{n_t^I} dt + \theta_t^{\mathcal{R}} dr_t^{\mathcal{R}}(\theta_t^{\mathcal{R}}) + \theta_t^{D,I} dr_t^D + \theta_t^{L,I} dr_t^L + \theta_t^{\times,I} dr_t^{\times,I} + \tau_t^I dt \\ 1 = \theta_t^{\mathcal{R}} + \theta_t^{D,I} + \theta_t^{L,I} + \theta_t^{\times,I} & \theta_t^{\mathcal{R}} \geq \underline{\theta}_t^{\mathcal{R}} \end{split}$$

$$\qquad \qquad \mathbf{d} r_t^{\mathcal{R}}(\theta_t^{\mathcal{R}}) = i(\theta_t^{\mathcal{R}}) dt + \frac{d(1/\mathcal{P}_t)}{1/\mathcal{P}_t} = \left[\frac{\theta_t^{\mathcal{R}} \underline{i}_t + (\theta_t^{\mathcal{R}} - \underline{\theta}_t^{\mathcal{R}}) i_t}{\theta_t^{\mathcal{R}}} - \pi_t \right] dt$$

$$dr_t^{x,I} = (r_t^x + \tau_t^x) dt + \sigma_t^{q^x} dZ_t + \varphi \tilde{\sigma}_t d\tilde{Z}_t$$

Monopolistic Firms

- Monopolistic producers add variety to a common good produced by HH:
 - ▶ Linear technology: $Y_t^j = y_t^j$, set prices P_t^j s.t. Rotemberg frictions:

$$\int_0^\infty \Xi_t^H \left[\left(\frac{P_t^j}{P_t} \right)^{1-\varepsilon} - p_t (1-\tau^F) \left(\frac{P_t^j}{P_t} \right)^{-\varepsilon} - \frac{\kappa}{2} \left(\pi_t^j \right)^2 - T_t^F \right] Y_t dt$$

- Perfectly competitive final good producers
 - Bundle varieties into consumption good using CES aggregator
- NKPC:

$$\frac{\mathbb{E}\left[d\pi_{t}\right]}{dt} = \left(r_{t}^{f,H} - \frac{\mathbb{E}\left[dY_{t}\right]}{Y_{t}dt} + \varsigma_{t}^{C,H}\sigma_{t}^{Y}\right)\pi_{t} - \frac{\varepsilon}{\kappa}\left(p_{t}(1-\tau) - \frac{\varepsilon-1}{\varepsilon}\right)$$

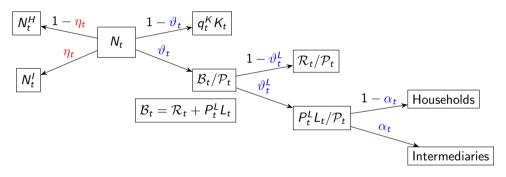
$$\pi_{t} = \frac{\varepsilon}{\kappa Y_{t}}\mathbb{E}_{t}\int_{t}^{\infty} e^{-\int_{t}^{s} r_{\tau}^{f}d\tau} Y_{s}\left(p_{s}(1-\tau) - \frac{\varepsilon-1}{\varepsilon}\right)ds$$

Constrained Efficiency

- **Proposition 1.** Under some assumption on $\{\lambda, \varphi\}$, there exists a unique solution to the planner's problem for $\eta^*(\tilde{\sigma_t}) > \lambda$ and the constrained efficient allocation has the following properties:
 - lacktriangle Capital utilization $v^*(\tilde{\sigma}_t)$ is constant $(\mu_t^{v,*} = \sigma_t^{v,*} = 0)$
 - ▶ Intermediaries' wealth and risk shares $\eta^*(\tilde{\sigma}_t)$ and $\chi^*(\tilde{\sigma}_t)$ are increasing in $\tilde{\sigma}_t$
 - Nominal wealth share $\vartheta^*(\tilde{\sigma}_t)$ is increasing in $\tilde{\sigma}_t$
 - ▶ Investment rate $\iota^*(\tilde{\sigma}_t)$ is decreasing in $\tilde{\sigma}_t$

Net Worth and Risk Distributions

► Net worth distribution:



Idiosyncratic risk distribution: χ_t held by Intermediaries

 $1-\chi_t$ held by Households

Equilibrium

- ► Key variables: $\tilde{\sigma}_t$, η_t , v_t , ϑ_t , P_t^L , π_t
- ▶ Markovian equilibrium with state variables $S \equiv \{\tilde{\sigma}, \eta, v\}$:
 - Laws of motion for S:

$$egin{aligned} d ilde{\sigma}_t^2 &= -b_s(ilde{\sigma}_t^2 - ilde{\sigma}_{ss}^2)dt + \sigma ilde{\sigma}_t^2 dZ_t \ & rac{d\eta_t}{\eta_t} &= \mu_t^\eta dt + \sigma_t^\eta dZ_t \ & rac{darphi_t}{arphi_t} &= \mu_t^arphi_t dt + \sigma_t^arphi_t dZ_t \end{aligned}$$

- Policy variables $\underline{i}(S)$, i(S), $\vartheta^{L}(S)$, $\underline{\theta}^{R}(S)$, $\tau^{I}(S)$, $\tau^{X}(S)$, $\tau^{K}(S)$
- ▶ Mappings $\vartheta(S), P^L(S), \pi(S)$

satisfying agents' optimality and market clearing

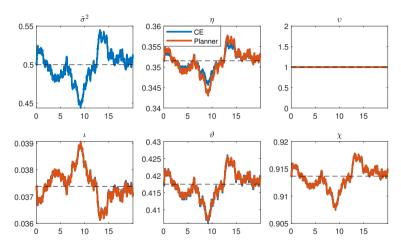
Efficient Consumption & Risk Allocation Only: Implementation

$$\eta_t^* \sigma_t^{\eta,*} = (\eta_t^* - \chi_t^*) \sigma_t^{\vartheta,*} + (\chi_t^* - \eta_t^* + \vartheta_t^* (\alpha_t - \chi_t^*)) \vartheta_t^L \sigma_t^{P^L}$$

$$\frac{\sigma_t^{\eta,*}}{1 - \eta_t^*} \sigma_t^{P^L} = \nu_t^2 \mathfrak{t}'(\nu_t)$$

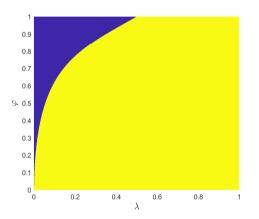
$$\nu_t \left[\chi_t^* - \eta_t^* + \vartheta_t^* (1 - \chi_t^*) - (1 - \alpha_t) \vartheta_t^L \vartheta_t^* \right] = 1 - \vartheta_t^*$$

Back



Constrained Efficiency: Properties

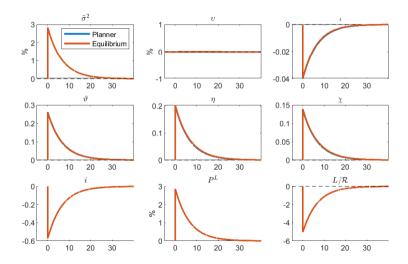
$$6\lambda(1-\lambda)(1-\varphi^2)(1-\lambda+\lambda\varphi^2)-(1-2\lambda)\varphi^2\geq 0$$



Consolidated Government

$$\mu_t^{\mathcal{R}} \mathcal{R}_t + P_t^L \mu_t^L L_t + \mathcal{P}_t \tau_t^K K_t = \underline{i}_t \underline{\mathcal{R}}_t + i_t (\mathcal{R}_t - \underline{\mathcal{R}}_t) + i^L L_t - \sigma_t^{P^L} \sigma_t^L P_t^L L_t$$
$$\sigma_t^{\mathcal{R}} \mathcal{R}_t + P_t^L \sigma_t^L L_t = 0$$

IRF under Full Efficiency

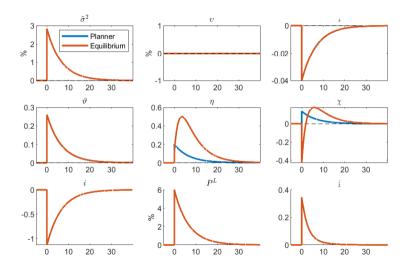


Production Efficiency Only: Implementation

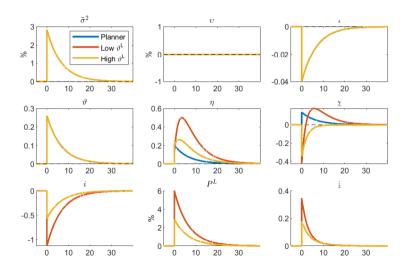
- ϑ_t is an equilibrium 'mapping' \Rightarrow implement ϑ_t^* by appropriate capital taxes τ_t^K along the equilibrium path
- v_t is a state variable \Rightarrow need to ensure $\mu_t^v = \sigma_t^v = 0 \; \forall t$
 - ightharpoonup Drift is targeted by \underline{i}_t
 - ▶ Volatility loading is targeted by i_t and ϑ_t^L
- From goods market clearing:

$$\begin{aligned} \mathsf{a}\upsilon_t &= \rho \frac{q_t^{\mathcal{B}}}{\vartheta_t} + \iota_t = \rho \frac{q_t^{\mathcal{B}}}{\vartheta_t} + \frac{q_t^{\mathcal{K}} - 1}{\phi} = \rho \frac{q_t^{\mathcal{B}}}{\vartheta_t} + \frac{q_t^{\mathcal{B}}(1 - \vartheta_t)}{\phi\vartheta_t} - \frac{1}{\phi} \\ q_t^{\mathcal{B}} &= \frac{\mathcal{B}_t}{\mathcal{P}_t \mathcal{K}_t} \qquad \mathcal{B}_t = \mathcal{R}_t + P_t^{\mathcal{L}} \mathcal{L}_t \end{aligned}$$

IRF under Production Efficiency



IRF under Production Efficiency: Equivalence



27 / 27

IRF under Allocative Efficiency: Multiplicity

