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this talk

Objective: solve macro-finance models with “financial shocks” and volatile risk premia

This paper: a portfolio constraint that allows for

▶ fully dynamic model: long-lived agents, endogenous interest rates

▶ simple “myopic” portfolios with time-varying risk tolerance

▶ simple aggregation in general equilibrium

Existing approaches:

▶ preference shocks (risk aversion, robustness concerns, habits)

▶ preference, technology heterogeneity + redistribution

Suggested improvements: closed-form solutions + reduced demands for state space
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outline

Portfolio constraint and portfolio choice

▶ value-at-risk interpretation

▶ foundation through robustness concerns

Aggregation results

▶ interest rate and risk premium

▶ redistribution

Applications:

▶ risk premium dynamics with output shocks

▶ bond-stock correlation
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A value-at-risk constraint



environment
State xt is d-dimensional, driven by a b-dimensional Brownian motion {Zt}t≥0:

dxt = µx(xt)dt + σx(xt)dZt

Risk-free instant-maturity bond pays r(xt) and k risky assets with excess returns dRt:

dRt = µR(xt)dt + σR(xt)dZt

Budget constraint:

dwt = (r(xt)wt − ct)dt + wtθ
′
tdRt

Agent’s problem: given a process for γt ∈ [0, 1],

max
{ct ,θt}t≥0

E

∫ ∞

0
ρe−ρt log(ct)dt

s.t. Vt[θ
′
tdRt] ≤ γtEt[θ

′
tdRt] (value-at-risk)
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heuristic explanation

Take some (Lt, αt):

P{θ′tdRt ≤ −
√

Ltdt} ≤ αt

Equivalently,

Φ

(
−

√
Ltdt + θ′tµR(xt)dt√
θ′tσR(x)σR(x)′θtdt

)
≤ αt

Suppose α ≤ 1/2, in the limit dt −→ 0,

θ′tσR(xt)σR(xt)θ
′
t ≤

Lt

(Φ−1(αt))2

With Lt = θ′tµR(xt) and αt = Φ(−
√

1/γt),

Vt[θ
′
tdRt] = θ′tσR(xt)σR(xt)θ

′
tdt ≤ γt · θ′tµR(xt)dt = γtEt[θ

′
tdRt]
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consumption and portfolio choice

Result: value separable over states wt and xt: V(wt, xt) = log(wt) + η(xt) with recursive formulation

c∗(wt, xt) = ρwt

θ∗(wt, xt) = min{1, γt} · [σR(xt)σR(xt)
′]−1µR(xt)

▶ capping std: Danielsson, Shin, and Zigrand (2012), Adrian and Boyarchenko (2018)

θ∗(wt, xt) = λ(γt, wt, xt) · [σR(xt)σR(xt)
′]−1µR(xt)

▶ myopic agents: Vayanos and Vila (2021)

▶ recursive preferences of Kreps and Porteus (1978), Duffie and Epstein (1992) recursive preferences

θ∗(wt, xt) = γt · [σR(xt)σR(xt)
′]−1µR(xt) + f (xt)
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extensions

Simple portfolios survive with income from outside of financial markets:

▶ taxes (inducing stationarity)

▶ perpetual youth of Yaari (1965), Blanchard (1985)

Key to preserve consumption and portfolio choice: additional terms linear in own wealth

dwt = (r(xt)wt − ct)dt + θ′tdRt − wtς(xt)dt︸ ︷︷ ︸
deterministic tax

−wtτ(xt)
′dZt︸ ︷︷ ︸

stochastic tax

Can handle any deterministic tax ς(xt), stochastic “profit” taxes τ(xt)′ ∝ θ(xt)′σR(xt) result

A foundation through robust choice foundation
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Aggregation



an economy with integrated markets

▶ agents i ∈ {1, ...n} identical except for individual states: multipliers {γit} and wealth {wit}

▶ risky assets j ∈ {1, ...k} in fixed supply {sj} priced at {pjt}, pay dividends {yjt}

▶ risk-free instant maturity bonds in zero net supply pay rt

▶ agents portfolio shares {θijt} translate to holdings hijt = θijtwit/pjt and bit = (1 − θ′it1k)wit

Given shocks {yjt, γit}t≥0, an equilibrium is a set of adapted processes for prices {pjt, rt}t≥0 and

quantities {wit, cit, bit, hijt}t≥0 that solve agents’ problems with prices taken as given and satisfy

∑i hijt = sj for all j

∑i bit = 0

∑i cit = ∑j sjyjt
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equilibrium characterization

With yt = {yjt}, γt = {γit}, wt = {wit}, aggregate states are xt = (yt, γt, wt), where wt = wt a.s.

dyt = µy(yt)dt + σy(yt)dZt

dγt = µγ(γt)dt + σγ(γt)dWt

Characterize prices p(xt) = {pj(xt)} and r(xt) as functions of aggregate states:

dp(xt) = µp(xt)dt + σp,y(xt)dZt + σp,γ(xt)dWt

Vector of excess returns:

dRt ≡ µR(xt)dt + σR,y(xt)dZt + σR,γ(xt)dWt

= D(pt)
−1(µp(xt) + yt − r(xt)p(xt))dt + D(pt)

−1(σp,y(xt)dZt + σp,γ(xt)dWt)
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wealth shares

Total wealth is exogenous:

ρ ∑i wit = ∑j sjyjt

Denote wt = ∑i wit and define µw(xt) and σw(xt) by

dwt

wt
≡ µw(yt)dt + σw(yt)dZt =

1
s′yt

[s′µw(yt)dt + s′σy(yt)dZt]

Denote wealth shares by νit =
wit
wt

and define the weighted average Γt and dispersion ∆t

Γt = ∑i νitγit

∆t = ∑i νitγ
2
it −

(
∑i νitγit

)2
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leverage and risk tolerance

Proposition 1: in equilibrium, agent i’s leverage λit ≡ ∑j θijt is given by

λit =
γit
Γt

Proposition 2: wealth shares evolve as

dνit
νit

= (λit − 1) ·
[

1 − Γt

Γt
|σw(yt)|

2dt + σw(yt)dZt + 0′dWt

]

Proposition 3: the wealth-weighted average multiplier evolves as

dΓt =
∆t

Γt
·
[

1 − Γt

Γt
|σw(yt)|

2dt + σw(yt)dZt + 0′dWt

]
+ ν′

tdγt
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asset prices

Proposition 4: the interest rate and asset prices solve

r(xt) = ρ + µw(yt)−
|σw(yt)|2

Γt

r(xt)p(xt) = yt + µp(xt)−
σp,y(xt)σw(yt)

′

Γt

Corollary: the PDE for asset prices is linear.

r(xt)pj(xt) = yjt +Dpj(xt)

[
µx(xt)−

1
Γt

σx,z(xt)σw(yt)
′︸ ︷︷ ︸

risk adjustment

]
+

1
2

tr[Hpj(xt)σx(xt)σx(xt)
′]

Corollary: Λt p(xt) = Et

∫ ∞

t
Λsysds, where Λ0 = 1 and

d log(Λt) = −(ρ + µw(yt))dt − 1
Γt

·
[

1 − Γt

Γt
|σw(yt)|

2dt + σw(yt)dZt

]
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Example: integrated markets



risk premia driven by output shocks

Caballero and Simsek (2020): risk premium shocks −→ real shocks

▶ speculators with heterogenous beliefs and risk tolerance make bets

▶ speculation redistributes wealth and changes aggregate risk tolerance

▶ natural interest rate changes

▶ failure to adjust policy rate is a monetary shock with real effects

Value-at-risk: no speculation needed, just productivity shocks, closed-form solutions

▶ two agents with different value-at-risk multipliers + one tree + risk-free debt

▶ low output −→ high risk premium −→ low interest rate

▶ closely related: He and Krishnamurthy (2012)
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two agents, one tree

Lucas tree with
dyt

yt
= µdt + σdZt in unit supply, two agents with fixed multipliers γ and γ

▶ total wealth is pt = wt = ρ−1yt, growth and volatility µw = µ and σw = σ

▶ wealth shares νt and νt = 1 − νt

▶ weighted average Γt = γ + νt(γ − γ) determines interest rate and risk premium:

rt = ρ + µ − σ2

γ + νt(γ − γ)︸ ︷︷ ︸
risk premium

≡ ρ + µ − xt

▶ more risk-tolerant agent borrows from less risk-tolerant

λt =
γ

Γt
> 1 >

γ

Γt
= λt
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wealth shares and risk premium

More risk-tolerant agent’s wealth share:

dνt

νt
=

(1 − νt)(γ − γ)

γ + νt(γ − γ)︸ ︷︷ ︸
excess leverage > 0

·
[

1 − γ − νt(γ − γ)

γ + νt(γ − γ)︸ ︷︷ ︸
risk compensation > 0

σ2dt + σdZt

]

Risk premium xt ∈
[

σ2

γ
,

σ2

γ

]
:

dxt

xt
=

(γxt − σ2)(σ2 − γxt)

σ6 · xt(σ
2(γ + γ − 1)− γγxt)︸ ︷︷ ︸

<0

dt − (γxt − σ2)(σ2 − γxt)

σ3 dZt
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stationary economy

Can impose wealth taxes to make the economy stationary

Figure: drift and volatility of the more risk-tolerant agent’s wealth share νt, stationary distribution.
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Example: bond-stock correlation



bond-stock correlation goes negative due to financial shocks

Simple model with two assets: claim to aggregate output (stocks) and bonds

Without financial shocks (fixed γt) price correlation positive

With financial shocks (stochastic γt) a region with negative correlation emerges

▶ small enough effective risk-tolerance

▶ large enough volatility of risk premia
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one agent, one stock, one bond

A perpetuity (price pt, pays τ), claim to aggregate output (price qt, pays yt):
dyt

yt
= µdt + σdZt

One agent with a value-at-risk multiplier γt: dγt = µγ(γt)dt + σγ(γt)dWt

▶ set σγ(γt) = ς
√
(γt − γ)(γ − γt) and µγ(γt) = ς2(a(γ − γt)− b(γt − γ))

▶ invariant distribution of γt is B(a − 1, b − 1)

Individual wealth wt, aggregate wealth wt: dwt = (r(xt)− ct)wtdt + wtθt
′dRt −

wt

wt
τdt

▶ aggregate state is xt = (γt, yt)

▶ agent is representative: wt = wt a.s., with ρwt = yt

▶ τ is tax rate, levied in proportion to individual wealth, finances coupon payments
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risk premia and asset prices

Interest rate:

r(xt) = ρ + µ︸ ︷︷ ︸
natural

−
(

σ2

γt
− ρτ

yt

)
︸ ︷︷ ︸
risk premium

Risk premium decreases in γt, decreases in coupon-to-output ratio

Asset prices solve linear PDE:

r(xt)p(xt) = τ +

(
µ − σ2

γt

)
py(xt)yt + µγ(γt)pγ(xt) +

σ2

2
pyy(xt)y2

t +
σγ(γt)2

2
pγγ(xt)

r(xt)q(xt) = yt +

(
µ − σ2

γt

)
qy(xt)yt + µγ(γt)qγ(xt) +

σ2

2
qyy(xt)y2

t +
σγ(γt)2

2
qγγ(xt)

19/22



no financial shocks

Fix γt ≡ γ, can prove that stock and bond prices p(·) and q(·) are both increasing functions of yt

Figure: bond price p(yt) and stock price q(yt) under γt ≡ 1
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adding financial shocks

With σγ(γt) high enough, a region of negative correlation appears

Figure: correlation of bond and stock price increments dp(yt) and dq(yt), contour shows corr=0
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conclusion

A version of value-at-risk constraint that preserves tractable portfolios with

▶ long-lived agents

▶ time-varying risk tolerance

Robustness interpretation

Simple aggregation in general equilibrium

▶ potential for studying segmented markets
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recursive problem formulation

With (w, x) as states, value V(w, x) solves back

ρV(w, x) = max
c,θ

ρ log(c) + (r(x)w − c + wθ′µR(x))Vw(w, x) +
θ′σR(x)σR(x)′θ

2
Vww(w, x)

+ µx(x)′Vx′(w, x) +
1
2

tr[σx(x)′Vxx′(w, x)σx(x)] + wθ′σR(x)σx(x)′Vwx′(w, x)

s.t. θ′σR(x)σR(x)′θ ≤ γ · θ′µR(x)
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relation to recursive preferences

Take Kreps and Porteus (1978) preferences in Duffie and Epstein (1992) form, keep EIS=1: back

Vt = Et

∫ ∞

t
φ(cs, Vs)ds with φ(c, v) =

ρv(γ − 1)
γ

[
log(c)− γ

γ − 1
log
(

v(γ − 1)
γ

)]
Value is no longer separable over w and x:

V(w, x) =
(wη(x))1−1/γ

1 − 1/γ

Optimal portfolio includes hedging motives if γ ̸= 1:

c∗(w, x) = ρw

θ∗(w, x) = γ · [σR(x)σR(x)′]−1µR(x) + (γ − 1)[σR(x)σR(x)′]−1 σR(x)σx(x)′
ηx′(x)
η(x)︸ ︷︷ ︸

hedging motives
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a foundation through robustness preferences

Same consumption and portfolio choice with a version of robust preferences technical details back

Take an “alternative” Brownian motion {Bt}t≥0 : B0 = Z0 and dBt = dZt − htdt

Agent entertains alternative models under which dBt is a true standard Brownian motion

Assumes the following processes for excess returns and states:

dRt = µR(xt)dt + σR(xt)dZt ≡ (µR(xt)− σR(xt)ht)dt + σR(xt)dBt

dxt = µx(xt)dt + σx(xt)dBt︸ ︷︷ ︸
no mistake

Willingness to entertain pessimistic scenarios: parameter ψt 7→ risk-tolerance γt
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multiplier problem

Let {Zt}t≥0 be a standard Brownian on (Ω,F , {Ft}t≥0, P), take an adapted process {ht}t≥0

▶ consider an adapted process {Mt}t≥0 : M0 = 1 and dMt = −ht MtdZt

▶ defines a probability measure Q : EQ[ξt] = EP[Mtξt] for all bounded {ξt}t≥0 and all t ≥ 0

▶ {Bt}t≥0 with B0 = 0 and dBt = dZt − htdt is a standard Brownian on (Ω,F , {Ft}t≥0, Q)

▶ given an adapted process {ψt}t≥0 and mt ≡ log(Mt), agent solves a multiplier problem

max
{ct ,θt}

inf
Q

EQ

[∫ ∞

0
ρe−ρt log(ct)dt +

∫ ∞

0
e−ρtψtdmt

]
solving the problem back

22/22



solving the multiplier problem
Log-likelihood process mt evolves as back

dmt = −1
2
|ht|2dt − h′tdZt =

1
2
|ht|2dt − h′tdBt

Recursive formulation:

ρV(w, x) = max
c,θ

min
h

ρ log(c) +
ψ|h|2

2

+ (r(x)w − c + wθ′(µR(x)− σR(x)h))Vw(w, x) +
1
2

θ′σR(x)σR(x)′θVww(w, x)

+ µx(x)′Vx′(w, x) +
1
2

tr[σx(x)′Vxx′(w, x)σx(x)] + wθ′σR(x)σx(x)′Vwx′(w, x)

Separability preserved: V(w, x) = log(w) + η̂(x) and standard setup

c∗(w, x) = ρw

θ∗(w, x) =
ψ

ψ + 1
· [σR(x)σR(x)′]−1µR(x)
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relation to standard robustness setup
In the standard case, model for states is misspecified too: back

dxt = µx(xt)dt + σx(xt)dZt ≡ (µR(xt)− σx(xt)ht)dt + σx(xt)dBt

Recursive formulation:

ρV(w, x) = max
c,θ

min
h

ρ log(c) +
ψ|h|2

2

+ (r(x)w − c + wθ′(µR(x)− σR(x)h))Vw(w, x) +
1
2

θ′σR(x)σR(x)′θVww(w, x)

+ (µx(x)− σx(x)h︸ ︷︷ ︸
new

)′Vx′(w, x) +
1
2

tr[σx(x)′Vxx′(w, x)σx(x)] + wθ′σR(x)σx(x)′Vwx′(w, x)

Separability V(w, x) = log(w) + η̂(x) preserved but optimal h and θ pick up Vx′(w, x):

θ∗(w, x) =
ψ

ψ + 1
· [σR(x)σR(x)′]−1µR(x)− 1

ψ + 1
[σR(x)σR(x)′]−1σR(x)σx(x)′

η̂x′(x)
η̂(x)
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stochastic taxes proportional to profits

Consider the following class of tax rates: back

τ(xt) = ζ(xt)γt · σR(xt)
′[σR(xt)σR(xt)

′]−1µR(xt)

Tax payments proportional to resulting profits:

τ(xt)
′dZt = ζ(xt)θ(xt)

′σR(xt)dZt = ζ(xt)θ(xt)
′(dRt − µR(xt)dt)

Optimal portfolio the same unless ζ(xt) very negative:

θ(wt, xt) = min{γt, 1 + ζ(xt)γt} · [σR(xt)σR(xt)
′]−1µR(xt)
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common component in prices

Prices load on local and global shocks: back

dp(x, γ) = µp(x, γ)dt + σp,x(x, γ)dZt + σp,γ(x, γ)dWt

Figure: common component σp,γ(x, γ)/p(x, γ)

(a) as a function of x for different γ (b) as a function of γ for different x
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