# Resilience and Macrofinance

Markus K. Brunnermeier

**Princeton University** 

Princeton Initiative 2025

Princeton, 2025-09-05

# Real US GDP in log scale: Financial Crises as Resilience Killers



## Real US GDP in log scale: Financial Crises as Resilience Killers



- Gap in 2024 alone  $\approx $3-4 \text{ trillion ($26 minus $22)}$
- Gap over the years≈ shaded area

- Non-resilience matters in
  - Levels
  - Growth rates
- After financial crises

Long-run Risk = non-resilience in growth rates

### **Macrofinance Models**

- Stochastic dynamical system
- Agents maximize concave utility function are risk averse
- "System of Optimizers"
  - Weights of type of agents change + behavior adjust
  - Behavior depends on forecasted processes (rational expectations)
    - Future paths of mean and risk
  - Fully understand all exogenous and endogenous processes
- Financial frictions limit risk sharing
  - ullet E.g. N-dimensional Brownian Motions, but contracts on contingent on K < N Brownians
- Simplest version
  - 2 types: bankers and households
  - State variable: "wealth share" of bankers (endogenous process)

### Roadmap

#### 1. Resilience

- Definition, Measure due to Behavioral Changes
- Risk vs. Resilience Management
- Macro vs. Micro-Resilience

#### 2. Macrofinance Models

- First Generation: linear, mean-reversion
- Second Generation: tipping points, traps with escapes, volatility/risk dynamics ...

#### 3. Macrofinance Themes and Resilience

- Safe Assets
- Government, Monetary and Fiscal Policy
- Financial Intermediary Sector and Financial Resilience
- Heterogeneity within Financial Sector

### Resilience

■ A stochastic process (cash flow, return, GDP-level, -growth process) is resilient

if the adaptability of agents' behavior leads it to bounce back after a shock to system.

Permanent shock

(portfolio, economy)



- Risk Measures:
  - Variance
  - Value-at-Risk (VaR)
  - Expected Shortfall (ES)

- Resilience Measures (?):
  - Mean-reversion
  - Half-life of a shock
  - Cumulative Impulse Response Function (IRF)
     Mean exit time

### Resilience Measure: (Mean) Exit Time

• for a **fixed behavior** of each type of agent



- Exit Time
  - Conditional on starting state
  - Unconditional Mean Exit Time
- Focus on time, ignores "how bad" deviation is
- Fixed behavior



### Resilience of a Stochastic Process due to Agents' Behavioral Change

A stochastic process (cash flow, return, GDP-level, -growth process) is resilient

if the adaptability of agents' behavior leads it to bounce back after a shock to system.

(portfolio, economy) Permanent shock





### Resilience of a Stochastic Process due to Agents' Behavioral Change

■ A <u>stochastic process</u> (cash flow, return, GDP-level, -growth process) is resilient



# $\mathcal{R} ext{-Resilience Measure: PV of "adaptability benefits"}$

discounted area

- collapse path in a single number/statistic



- $\blacksquare$   $\mathcal{R}$ -Measure: PV of "benefits of adaptability of behavior and of system"
  - Zero-Benchmark: process absent any behavioral adaptability
    - Relative Resilience: relative to less adaptable system (e.g. one-time least costly adjustment)

## $\mathcal{R}$ -Resilience Measure: PV of "adaptability benefits"

- collapse path in a single number/statistic



# $\mathcal{R} ext{-}$ Resilience Measure: PV of "adaptability benefits"

- collapse path in a single number/statistic





# $\mathcal{R} ext{-}$ Resilience Measure: PV of "adaptability benefits"

- collapse path in a single number/statistic



## Measuring $\mathcal{R}$ -Resilience

Permanent exogenous SHOCK (detrended)



Temporary



Sunspots

$$\mathcal{E}\left\{ ig|_{}^{}$$

## Measuring $\mathcal{R}$ -Resilience

Permanent exogenous SHOCK



Temporary



... Sunspots











## Resilience Measure – more formally

- $\blacksquare$   $\mathcal{R}$ -Resilience is a "cumulative gap measure" btw.
  - $X_t^{\Phi}$  = Equilibrium process (with adjustment cost  $\Phi$ )
  - $X_t^{[0]}$  = No behavioral adjustment benchmark
- lacksquare Conditional on shock  $s_{t_0}$ , given history  $\underline{s}^{t_0-1}$

$$\mathcal{R}^{X,\Phi,[0]}(s_{t_0}|\underline{s}^{t_0-1}) \coloneqq E_{t_0}[\sum_{t \ge t_0} \left(X_t^{\Phi} - X_t^{[0]}\right)|s_{t_0};\underline{s}^{t_0-1}]$$

- ullet Unconditional ... take ergodic unconditional expectations over all possible  $t_0$ -shocks
- Generalizations/Modifications: Apply to
  - Growth processes
  - Discounted process
  - Discounted utility flow  $u(X_t)/(1+\rho)^{t-t_0}$

### **Resilience and Related Concepts**

- Amplification/Mitigation instantaneous
- Persistence, Recovery vs. Divergence
   Momentum vs. Reversals
   Property of stochastic process, not associated with behavioral adjustment
- Propagationcross section
- Trend stationarity (after detrending)
- Stability vs. Resilience
  - Resilience involves change of subsystems (after large shock)
  - Stability ... all subsystems revert back (after small shock)

### Roadmap

#### 1. Resilience

- Definition, Measure due to Behavioral Changes
- Risk vs. Resilience Management
- Macro vs. Micro-Resilience

#### 2. Macrofinance Models

- First Generation: linear, mean-reversion
- Second Generation: tipping points, traps with escapes, volatility/risk dynamics ...

#### 3. Macrofinance Themes and Resilience

- Safe Assets
- Government, Monetary and Fiscal Policy
- Financial Intermediary Sector and Financial Resilience
- Heterogeneity within Financial Sector

# From Risk to Resilience Management

temporary long-run Shift in Mindset

- Risk Management
  - Avoid + diversify risk at t, given  $E_t[R_{t+1}]$  (exposure to many shocks a bit rather highly to a particular one)
    - "don't put all eggs in one basket"
- **Resilience** Management: Adapt after risk realization at t+1
  - Invest at t in positive adaptability/agility
    - Substitutability + scalability:
       Liquidity, elasticity of substitution, low adjustment costs, multi-sourcing (gain expertise/trading desk for several asset classes)
    - "open many doors, so that one can easily and swiftly react"
  - Push away adaptability inhibitors, traps and tipping points
    - Buffers: Equity capital, reserves, redundancies, diversification
    - "build up a war chests/buffer"
- Links: Hedging demand a la Merton,
   Long-run Risk can't be diversified, only adaptability



**Tipping poin** 

### Macro- vs. Micro-resilience: Aggregation of Resilience

■ Micro-resilience of each subsector ⇒ Macro-resilience Resilience Aggregation Paradox: A Fallacy of Composition

## Macro- vs. Micro-resilience: Aggregation of Resilience

Micro-resilience of each subsector 
 ⇒ Macro-resilience
 Resilience Aggregation Paradox: A Fallacy of Composition

Zombie firms: unproductive aging firms,

that bind resources that should be freed up for new firms

**no** Schumpeterian creative destruction

■ Firms over 100 years old:

Age of firms:

| Rank | Country       | Number of companies | Ratio |
|------|---------------|---------------------|-------|
| 1    | Japan         | 33,076              | 41.3% |
| 2    | United States | 19,497              | 24.4% |



### **Resilience and Networks**

- Systemic risk across subsectors, or institutions
  - Network structure (diversification vs. spillovers) ⇒ Co-Resilience



- **Split** intermediary sector into
  - Banks diversify risk, create money/safe asset
    - Traditional vs. shadow banks
  - Pension funds/life insurance retirement savings
  - Asset managers investing/risk sharing
  - How to segment intermediary sector? Models with many state-variables
    - Methodology: deep learning/neural networks algorithms

### Roadmap

#### 1. Resilience

- Definition, Measure
- Risk vs. Resilience Management
- Macro vs. Micro-Resilience

#### 2. Macrofinance Models

- First Generation: linear, mean-reversion
- Second Generation: tipping points, traps with escapes, volatility/risk dynamics ...

#### 3. Macrofinance Themes and Resilience

- Safe Assets
- Government, Monetary and Fiscal Policy
- Financial Intermediary Sector and Financial Resilience
- Heterogeneity within Financial Sector

### Macrofinance

- Model framework:
  - GE + Dynamics with aggregate impact + Heterogenous Agents focused
  - Financial Frictions (Sector) (not preference focused)
    - Debt issuance constraint (borrowing constraint, collateral/VaR constraint)
    - Equity issuance constraint
    - Incomplete markets: uninsurable idiosyncratic risk



Government Financing

### 1. Log-linearized: First Generation Macrofinance

- Focus on local dynamics around the steady state after a small shock
- Log-linearized approximation of dynamics around steady state
- Log-linearization implies that agents "think" there is no perceived risk (no risk premium)
- Ex-ante probability of an aggregate shock is assumed to be zero
- Absence of rich volatility dynamics

## 1. Log-linearized: First Generation Macrofinance



Bernanke, Gertler, Gilchrist 99

DSGE models

adaption in form of fire-sales

- Bewley 79, Aiyagari 94, ...
  - Incomplete markets **Precautionary savings** depress risk-free interest rate  $r^f$  = capital return

## 1. Log-linearized: First Generation Macrofinance

Dynamic
Amplification

Riyotaki Moore 97

area (discounted) measures
Negative Resilience
adaption in form of fire-sales

Bernanke, Gertler, Gilchrist 99

DSGE models

- Bewley 79, Aiyagari 94, ...
  - lacktriangle Incomplete markets, **Precautionary savings** depress risk-free interest rate  $r^f$  = capital return
- Limits Resilience Analysis due to log-linearity
  - 1. No trap, No tipping points, ...
  - 2. Agents expect deterministic recovery  $\Rightarrow$  no aggregate risk premium/precautionary savings

- Traps, Tipping points (Resilience killers)
  - Non-linear models are needed (perturbation around Steady State not meaningful)





- Bursting Bubbles hit Tipping Points (large bubble large drop)
  - Bubbles: Lean vs. Clean, run-up leads to larger shocks possibly over tipping point (drawdowns)

- Traps, Tipping points (Resilience killers)
  - Non-linear models are needed (perturbation around Steady State not meaningful)



- Bursting Bubbles hit Tipping Points (large bubble large drop)
  - Bubbles: Lean vs. Clean, run-up leads to larger shocks possibly over tipping point (drawdowns)

... with Abreu Schularick et al ... with Palia, Sastry, Sims



- Bursting Bubbles hit Tipping Points (large bubble large drop)
  - Bubbles: Lean vs. Clean, run-up leads to larger shocks possibly over tipping point (drawdowns)

- Traps, Tipping points (Resilience killers)
  - Non-linear models are needed



- Bursting Bubbles hit Tipping Points (large bubble large drop)
  - Bubbles: Lean vs. Clean, run-up leads to larger shocks possibly over tipping point (drawdowns)

## 2. "Net Worth Trap": Second Generation Macrofinance

■ Traps with Escape (= double-humped stationary pdf) vs. No Escape (= absorbing state)



# 2. "Net Worth Trap": Second Generation Macrofinance

■ Traps with Escape (= double-humped stationary pdf) vs. No Escape (= absorbing state)



- **Dilemma:** (in models with endogenous net worth dynamics):
- Necessity for Net Worth Trap: Investors prevented from taking advantage of high  $\mathbb{E}_t[R]$ 
  - Financial (debt issuance) constraint
  - Belief/sentiment distortions

# 4. Volatility/Risk Dynamics: Second Gen. MacroFin

Risk premium

- "Risky Recovery" (perceived) also changes behavior
- Time-varying risk-taking
  - Risk
  - Price of risk
  - Debt constraints
- Time-varying precautionary savings
- Fan chart (generalized IRF)



Difference in distribution btw shock and no shock

⇒ Resilience inhibitors

### Roadmap

#### 1. Resilience

- Definition, Measure
- Risk vs. Resilience Management
- Macro vs. Micro-Resilience

#### 2. Macrofinance Models

- First Generation: linear, mean-reversion
- Second Generation: tipping points, traps with escapes, volatility/risk dynamics ...

#### 3. Macrofinance Themes and Resilience

- Safe Assets
- Financial Intermediary Sector and Financial Resilience
- Heterogeneity within Financial Sector
- Government, Monetary and Fiscal Policy

### a) Safe Assets and Resilience: Second Generation MacroFin

with Merkel, Sannikov ... Reis

- Different Take: It's not about getting safe return, but to do something with it.
- Incomplete markets friction with uninsurable idiosyncratic risk (funding shocks)
  - ⇒ agents can't insure each other against idio risk directly (each agent has individual Brownian)
    - ... but, they can adapt, i.e. sell safe asset after negative idiosyncratic shock
  - Safe asset is primarily held for service flow from retrading/adapting.

```
p_t = \mathbb{E}_t[PV_{\xi^{**}}(cash\ flow)] + \mathbb{E}_t[PV_{\xi^{**}}(service\ flow)]; \quad \xi^{**} = \text{SDF of representative agent}
```

- Time-varying idiosyncratic risk that rises in downturns  $\mathbb{E}_t[PV_{\xi^{**}}(service\ flow)]$  rises in downturns  $\Rightarrow$  negative  $\beta$
- ⇒ Safe asset is an individual resilience tool and an aggregate hedging tool
  - Idiosyncratic risk through individual re-trading/adapting
  - Aggregate risk:  $\Rightarrow$  negative  $\beta$

... with Sebastian Merkel, Yuliy Sannikov

- Safe asset = good friend
  - Idiosyncratic risk: provides partial insurance through re-trading

⇒ Service Flow

50



... with Sebastian Merkel, Yuliy Sannikov

- Safe asset = good friend
  - Idiosyncratic risk: provides partial insurance through re-trading

⇒ Service Flow

■ Aggregate risk: appreciates in value in bad times  $\Rightarrow$  negative  $\beta$ 



#### In recessions:

Risk is higher

- Service flow is more valuable
- Cash flows are lower (depends on fiscal policy)

## a) Safe Assets and Macro-Resilience

### Bubble-Safe Asset Complementarity

- r < g-Bubble condition is easier satisfied, since  $E[r^{Safe\ Asset}]$  is depressed
  - lacktriangledown uninsurable idio risk  $\Rightarrow$  precautionary savings depressing  $r^f$
  - Negative  $\beta$
  - ... additional convenience yield
- Loss of Safe-Asset-Status = hitting a tipping point
  - Debt becomes informationally sensitive ⇒ asym. info ⇒ no retrading
  - Bubble bursts/jumps to another asset.
     Resilience destabilizer
- Asymmetric supply (not shortage) of safe asset leads to Flight-to-Safety in downturns
  - Provides resilience for (global) safe asset issuer (US, Germany, Japan ...)
  - Hurts the resilience for other countries (EMDE)
- Retrading: Micro-resilience enhancer
- Loss of Safe-Asset-Status: Macro-resilience destroyer Asymmetric supply:

# d) Segmenting Financial Sector & Network Spillovers

Split intermediary sector into

Acharya, ..., Philippon ... Jermann, Quadrini

- Banks diversify risk, create money/safe asset
  - Traditional vs. shadow banks
- Pension funds/life insurance retirement savings
- investing/risk sharing Asset managers
- How to segment intermediary sector? Models with many state-variables
  - Methodology: deep learning/neural networks algorithms
- Xiong ... Vayanos, Vila, ... Eisfeldt, Rampini

- Systemic risk across subsectors, or institutions
  - Network structure (diversification vs. spillovers) ⇒ Co-Resilience

instead of CoVaR

Allen, Gale ... Duffie

Gopalakrishna, Payne, Gu

Drechsler et al., ...

Koijen, Yogo ...

... with Adrian

### d) Public Sector and Policy Design: Gov. & Central Banks

- Government Debt Issues (Public Finance connection)

  - Exorbitant/Safe Asset Privilege/possibly bubbly
    - Deb valuation puzzle
  - Gov. debt maturity
  - Diabolic/Doom Loop/Sovereign-Bank Nexus
- MacroPrudential Policy/Fin. Repression, LOLR/Bailout Policy designs financial sector
  - MacroPru lowers dangers of Financial Dominance
- Monetary Policy
  - Risk-free interest rate, term + risk premium = (exo- + endogenous risk)\*price of risk
  - Redistributive MoPo to lower risk premia ⇒ Financial Sector Resilience ↑
    - Bottleneck approach which sector is balance sheet impaired
  - QE/QT
  - Size/Equity of Central Bank's balance sheet

### Roadmap

#### 1. Resilience

- Definition, Measure
- Risk vs. Resilience Management
- Macro vs. Micro-Resilience

#### 2. Macrofinance Models

- First Generation: linear, mean-reversion
- Second Generation: tipping points, traps with escapes, ...

#### 3. Macrofinance Themes and Resilience

- Safe Assets
- Financial Intermediary Sector and Financial Resilience
- Heterogeneity within Financial Sector
- Government, Monetary and Fiscal Policy

### Conclusion

- Financial **Resilience** is *first order* for **Macro** 
  - Bubbles: Lean vs. Clean



- Resilience Management instead of only Risk Management
- Traps, Tipping points and other resilience killer (non-linearities)
- lacktriangle Safe Assets eta < 0 ,
  - Micro: individual resilience via (portfolio) adjustment
     Macro: Bubble/Exorbitant Privilege ⇒ resilient fiscal policy, but loss of status
- Financial Sector Resilience spillovers (Co-Resilience) within and to macro economy
- Monetary Policy, Financial Regulation/Bailout, Fiscal Policy ⇒ Resilience

# EXTRA SLIDES

### Risk vs. Resilience Management

- Static risk
- Dynamic resilience depends on
  - Substitutability btw input A and input B partial equilibrium (holding prices fixed)
    - (asset A and B have similar risk profile)
    - No trading costs
  - Scalability of new input general equilibrium
    - Risk profile changes due to GE effects
- A and B with low correlation or
   C and D with higher correlation but better substitutability and scalability

#### Risk diversification

- lacktriangle Correlation ho
  - How many stocks/projects?
  - Which?

Resilience diversification adjustment cost (fixed cost) - adaptability

High fixed costs, but easy to scale up (variable costs)

- Example: portfolio of 2 assets (with and without portfolio adjustment same expected return)
- Risk preferences
  - $= \frac{u''}{u'} c$

Resilience preferences

curvature and IES??? (two vs. multi periods)

### 1. First Generation Macrofinance (no risk premium, log-linearized)

### Kiyotaki Moore 97

- Shock: zero-prob. temporary a-shock,  $Y_t = aK_t$
- Friction:
  - no equity issuance
  - debt collateral constrained
- $\blacksquare$  Zero  $\mathcal{R}$ -benchmark (no adaptation=no sale of capital)

#### Bernanke, Gertler, Gilchrist 99

log-linearized DSGE model agents expect deterministic recovery

debt with costly state verification  $N_t \downarrow \Rightarrow$  bankruptcy prob.  $\uparrow \Rightarrow$  funding costs  $\uparrow$  no divestment (capital to consumption)

Future research: vary  $\Phi$ -cost

### ■ Bewley 79, Aiyagari 94, ...

- Friction: Incomplete markets over idiosyncratic (endowment) risk, borrowing constraint
- Precautionary savings depressed risk-free interest rate  $r^f$  = capital return
- Linearization:  $\Rightarrow$  SS has to be in crisis region, stable SS  $\Rightarrow$  no tipping points, ... 69
- Agents expect deterministic recovery ⇒ no additional precautionary savings

... with Sebastian Merkel, Yuliy Sannikov

- Safe asset = good friend
  - Idiosyncratic risk: provides partial insurance through re-trading



... 70

... with Sebastian Merkel, Yuliy Sannikov

- Safe asset = good friend
  - Idiosyncratic risk: provides partial insurance through re-trading

⇒ Service Flow



... with Sebastian Merkel, Yuliy Sannikov

- Safe asset = good friend
  - Idiosyncratic risk: provides partial insurance through re-trading

⇒ Service Flow

■ Aggrégate risk: appreciates in value in bad times  $\Rightarrow$  negative  $\beta$ 



#### In recessions:

Risk is higher

- Service flow is more valuable
- Cash flows are lower (depends on fiscal policy)

### Resilience and Safe Asset

- Idiosyncratic risk (to k)
  - Assume adjustment to new k-target takes time (adjustment cost)
- With safe asset
  - Without adjustment cost
    - better risk-sharing (as one buys capital after destruction shock)
  - With adjustment cost
    - slowly rebalance portfolio and buy back some capital (to target level  $\widehat{k}$ )
- Not at aggregate level but individual level

### MacroFinance: More than Intersection of Macro & Finance

