Eco529: Modern Macro, Money, and International Finance Lecture 08: Multi-Sector, Banks & I Theory

Markus Brunnermeier

Princeton University

Summer, 2025

Course Overview

Intro

Real Macrofinance Models with Heterogeneous Agents

Immersion Chapters

Money Models

- io Single Sector: Money Model with Store of Value and Medium of Change
- Safe Asset with Time-varying Idiosyncratic Risk
- Multi-Sector: Money Model with Redistributive Monetary Policy
- Price Stickiness (New Keynesian)
- Welfare and Optimal Policies

International Macrofinance Models

Key Takeaways

- Risk Sharing via Inflation Risk (Redistribution)
- Real vs. Nominal Debt/Cashless vs. Cash
- Intertemporal Unit of Account
 - State-contingent Monetary Policy if $\sigma^{\mathcal{B}} \neq 0$
- Equivalence of Capital vs. Risk Allocation Setting (κ vs. χ)
- Liquidity and Disinflationary Spiral
- Policy
 - Fiscal Policy
 - (Redistributive) Monetary Policy
 - "Stealth Recapitalization" of Bottleneck Sector (Intermediaries)
 - Macroprudential Policy
- Technical Takeaways
 - Two Sector Money Models

The Big Roadmap: Towards the I Theory of Money

 One sector model with idio risk - "The I Theory without I" (steady state focus) Lecture 06-07

- Store of Value Insurance Role of Money within a Sector
- Medium of Exchange Role
- Fiscal Theory of the Price Level
- Time-varying Idiosyncratic Risk and Safe Asset
- 2 Sector/Type Model with Money and Idiosyncratic Risk
 - Equivalence btw Expert Producers and Intermediaries
 - Real Debt vs. Nominal Debt/Money
 Implicit insurance role of money across sectors
 - Banking, I Theory, Redistributive Monetary Policy
- Price/Wage Rigidities (New Keynesian)
- Welfare Analysis
 - Optimal Monetary Policy and Macroprudential Policy
- International Monetary Model

Today

Next Lecture

"Money and Banking" (in Macro-finance)

store of value/safe asset/Gov. bond Money

"diversifier" Banking holds risky assets, issues inside money

Watch "Money and Banking"

YouTube Video Channel: "markus.economicus"

Redistributive Monetary...

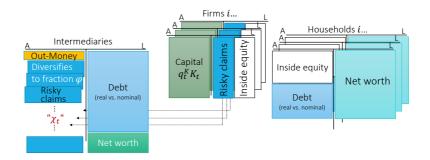
"Money and Banking" (in Macrofinance)

- store of value/safe asset/Gov. bond Money
- Banking "diversifier" holds risky assets, issues inside money
- Amplification/endogenous risk dynamics
 - Value of capital declines due to fire-sales Liquidity spiral - Flight to safety
 - Value of bond/money rises
 - Demand for bond/money rises less idiosyncratic risk is diversified
 - Supply for inside money declines
- Disinflation spiral a la Fisher
- less creation by intermediaries
- Endogenous money multiplier = f(capitalization of critical sector)
- Paradox of Thrift
- Paradox of Prudence (in risk terms)
- Monetary Policy (redistributive)

Overview

- Intro
- Equivalence btw Experts Producers and Intermediaries
- Real vs. Nominal Debt: Unit of Account in Incomplete Markets Setting
- I Theory of Money:
 - Liquidity and Deflationary Spiral
 - lacksquare Banks as Diversifiers $\Rightarrow ilde{\sigma}$ is a Function of Banks' Capitalization η_t
- Policy with Long-Dated Bonds

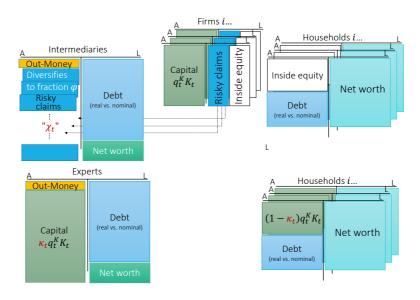
Intermediaries



Frictions

- Household cannot diversify idio risk
- Limited risky claims issuance

Equivalence



- $a^e = a^h$ $\tilde{\sigma}^e < \tilde{\sigma}^h$

Equivalence

• Why equivalence btw. intermediaries χ -risk allocation model and experts κ -capital allocation model?

Poll: Why are both settings equivalent?

- a) Since $a^e = a^h$.
- b) Intermediary sector does not produce any output.
- c) Risk χ and capital allocation κ are fundamentally different.

- Next: Contrast <u>Real Debt</u> with <u>Nominal Debt</u>/Money Model
 - Solve generic model and highlight the differences btw both settings.

Overview

- Intro
- Equivalence btw Experts Producers and Intermediaries
- Real vs. Nominal Debt: Unit of Account in Incomplete Markets Setting
- I Theory of Money:
 - Liquidity and Deflationary Spiral
 - lacksquare Banks as Diversifiers $\Rightarrow ilde{\sigma}$ is a Function of Banks' Capitalization η_t
- Policy with Long-Dated Bonds

Model with Intermediary Sector

Intermediary sector

- Hold equity up to $\bar{\chi} \leq 1$
- Consumption rate: c_t^I
- lacksquare Diversify idio risk to $\varphi \tilde{\sigma}$

lacksquare Objective: $\mathbb{E}_0\left[\int_0^\infty e^{ho t}\log(c_t^I)\mathrm{d}t\right]$

Friction: Can only issue debt

- 2 Models
- Real debt issuance only (and money has no value)
- 2 Nominal debt issuance
- Bond/Money supply (nominal) $\frac{d\mathcal{B}_t}{\mathcal{B}_t} = \mu_t^{\mathcal{B}} \mathrm{d}t + \sigma_t^{\mathcal{B}} \mathrm{d}Z_t$
- "Seigniorage" distribution as in previous lecture (no fiscal impact – per period balanced budget)

Household Sector

- Output: $y_t^h = a^h k_t^h$
- Consumption rate: c_t^h
- Investment rate: ι_t^h $\frac{\mathrm{d} k_t^{h,\tilde{i}}}{h^{\tilde{i}}} = \left(\Phi(\iota_t^{h,\tilde{i}}) \delta\right) \mathrm{d} t + \sigma \mathrm{d} Z_t + \tilde{\sigma}^h d \tilde{Z}_t^{\tilde{i}} + \mathrm{d} \Delta_t^{k,\tilde{i},h}$
- Objective: $\mathbb{E}_0 \left[\int_0^\infty e^{-\rho t} \log(c_t^h) dt \right]$

Solving Macro Models Step-by-Step

- O Postulate aggregates, price processes and obtain return processes
- I For given $\check{\rho}^i := C^i/N^i$ -ratio and $\xi^i = SDF^i$ processes for each i Toolbox 1: Martingale approach, HJB vs. Stochastic Maximum Principle Approach Fisher separation theorem
 - Real investment ι + Goods market clearing (static)
 - **b** Portfolio choice θ + asset market clearing or

Asset allocation κ & risk allocation χ

Toolbox 2: "Price-taking" social planner approach

Toolbox 3: Change in numeraire to total wealth (including SDF)

"Gov. Liability Evaluation/FTPL equation" θ

2 Evolution of state variable η (and K)

forward equation

finance block

3 Solve $\check{\rho}^i := C^i/N^i$ -ratio and $\xi^i = SDF^i$ processes

- backward equation
- Investment opportunities ω and K_t and $\tilde{\eta}^i$ -descaled v_t^i -process
- **b** Derive C^i/N^i -ratio and ς^i price of risk
- Derive BSDEs
- d Separating risk aversion from intertemporal substitution
- 4 Numerical model solution
 - Inner loop: For given $\check{\rho}^i := C^i/N^i$ s and ς^i s solve ODE for $q(\eta)$
 - **D** Outer loop: Transform BSDE into PDE and iterate functions $v^i(\eta, t)$
- 5 KFE: Stationary distribution, fan charts

0. Postulate Aggregates and Processes

- Assets: capital and bonds
 - q_t^K Capital price
 - $lacksymbol{q}_t^{\mathcal{B}} := rac{\mathcal{B}_t}{\mathcal{P}_t}/\mathcal{K}_t$ value of the bonds per unit of capital

 - Postulate Ito price processes $\mathrm{d}q_t^K/q_t^K = \mu_t^{q,K}\mathrm{d}t + \sigma_t^{q,K}\mathrm{d}Z_t, \mathrm{d}q_t^B/q_t^B = \mu_t^{q,B}\mathrm{d}t + \sigma_t^{q,B}\mathrm{d}Z_t, \mathrm{d}\vartheta_t/\vartheta_t = \mu_t^{\vartheta}\mathrm{d}t + \sigma_t^{\vartheta}\mathrm{d}Z_t$
 - SDF for each \tilde{i} agent: $\mathrm{d}\xi_t^{\tilde{i}}/\xi_t^{\tilde{i}} = -r_t^{i}dt \varsigma_t^{\tilde{i}}\mathrm{d}Z_t \tilde{\varsigma}_t^{\dagger}\mathrm{d}\tilde{Z}_t^{\tilde{i}}$
- Aggregate resource constraints:
 - Output: $C_t + \iota_t K_t + gK_t = aK_t$
 - Capital: $\int k_t^{\tilde{i}} d\Delta k_t^{k,\tilde{i}} d\tilde{i} = 0$
- Markets: Walrasian goods, bonds, and capital markets

Poll: Why is the drift $-r_t^i$ and not simply $-r_t^f$?

- a) With only nominal debt a real risk-free rate might not be in asset span.
- b) Negative drift of the SDF in N_t-numeraire is not risk-free rate.

1. Optimal ι + Goods Market

Recall Equilibrium

Price of physical capital

$$q_t^{\mathcal{K}} = (1 - \vartheta_t) \frac{1 + \phi \check{\mathsf{a}}}{(1 - \vartheta_t) + \phi \rho}$$

Price of nominal capital

$$q_t^{\mathcal{B}} = artheta_t rac{1 + \phi oldsymbol{\check{\mathsf{a}}}}{(1 - artheta_t) + \phi
ho}$$

Optimal investment rate

$$\iota_t = \frac{(1 - \vartheta_t)\check{a} - \rho}{(1 - \vartheta_t) + \phi\rho}$$

■ Moneyless equilibrium with $q_t^{\mathcal{B}} = 0 \Rightarrow \vartheta_t = 0 \Rightarrow q_t^{\mathcal{K}} = \frac{1+\phi\check{a}}{1+\phi\rho}$

1. Portfolio Choice: Price-taking Planner κ, χ Allocation

■ Objective (in total net worth N_t -numeraire):

$$\max_{\{\boldsymbol{\kappa}_t, \boldsymbol{\chi}_t, \tilde{\boldsymbol{\chi}}_t\}} \mathbb{E}[\mathrm{d}r_t^N(\boldsymbol{\kappa}_t)/dt] - \varsigma_t \boldsymbol{\sigma}(\boldsymbol{\kappa}_t, \boldsymbol{\chi}_t) - \tilde{\varsigma}_t \tilde{\boldsymbol{\sigma}}_t(\boldsymbol{\kappa}_t, \tilde{\boldsymbol{\chi}}_t)$$

- In our model(s):
 - $\kappa = 0$ (households manage all physical capital)
 - $\tilde{\chi}_t = \chi_t$
 - $\blacksquare \mathbb{E}[\mathrm{d}r_t^N(\kappa_t)/dt] = 0$

Poll: Why is
$$\mathbb{E}[\mathrm{d}r_t^N(\kappa_t)/dt] = 0$$
?

- a) Because capital is not reallocated, i.e. $\kappa=0$ all the time.
- b) In the N_t -numeraire return of total wealth $\mathrm{d} r_t^N=0$

1. Portfolio Choice: Price-taking Planner κ, χ Allocation

Objective:

$$\max_{\{\boldsymbol{\kappa}_t, \boldsymbol{\chi}_t, \tilde{\boldsymbol{\chi}}_t\}} \mathbb{E}[\mathrm{d}r_t^N(\boldsymbol{\kappa}_t)/dt] - \varsigma_t \boldsymbol{\sigma}(\boldsymbol{\kappa}_t, \boldsymbol{\chi}_t) - \tilde{\varsigma}_t \tilde{\boldsymbol{\sigma}}_t(\boldsymbol{\kappa}_t, \tilde{\boldsymbol{\chi}}_t)$$

- In our model(s):
 - $\kappa = 0$ (households manage all physical capital)
 - $\tilde{\chi}_t = \chi_t$
 - $\mathbb{E}[\mathrm{d}r_t^N(\kappa_t)/dt] = 0$
 - $\bullet \sigma = (\chi_t \sigma_t^{\mathsf{x}\mathsf{K}}, (1 \chi_t) \sigma_t^{\mathsf{x}\mathsf{K}}),$
 - where σ_t^{xK} = Risk of the excess return of capital beyond benchmark asset
 - $\tilde{\boldsymbol{\sigma}} = (\chi_t \varphi \tilde{\sigma}, (1 \chi_t) \tilde{\sigma}), \ \varphi < 1$

1. Portfolio Choice: Price-taking Planner κ, χ Allocation

Minimize weighted average cost of financing

$$\min_{\chi_t \leq \bar{\chi}} (\varsigma_t^I \chi_t + \varsigma_t^h (1 - \chi_t)) \sigma_t^{\mathsf{xK}} + (\tilde{\varsigma}_t^I \varphi \chi_t + \tilde{\varsigma}_t^h (1 - \chi_t)) \tilde{\sigma}$$

■ FOC: (equality if $\chi_t < \bar{\chi}$)

$$\varsigma_t^I \sigma_t^{\mathsf{x}\mathsf{K}} + \tilde{\varsigma}_t^I \varphi \tilde{\sigma} \leq \varsigma_t^h \sigma_t^{\mathsf{x}\mathsf{K}} + \tilde{\varsigma}_t^h \tilde{\sigma}$$

- **Real** debt model: $\sigma_t^{xk} = \sigma + \sigma_t^{q^K}$ (recall q_t^K is constant)
- Nominal debt model: $\sigma_t^{\mathsf{x}\mathsf{K}} = (-\sigma_t^\vartheta + \sigma_t^\mathcal{B})/(1-\vartheta_t)$
 - Risk of capital $\sigma + \sigma_t^{q^K} + \vartheta_t \sigma_t^{\mathcal{B}} / (1 \vartheta_t) \sigma_t^{\mathcal{N}}$ (in N_t -numeraire)
 - Risk of bond/money $\sigma + \sigma_t^{q^{\mathcal{B}}} \sigma_t^{\mathcal{B}} \sigma_t^{\mathcal{N}}$ (in N_t -numeraire)

1. "Benchmark Asset Evaluation (FTPL) Equation"

- In N_t -numeraire η_t^i takes on role of sector networth N_t^i
- Return on individual agent's networth return (in N_t -numeraire)

$$\frac{d\eta_t^i}{\eta_t^i} + \underbrace{\frac{\mathrm{d} ilde{\eta}_t^i}{ ilde{\eta}_t^i}}_{ ext{ector share}} + \underbrace{\frac{\mathrm{d} ilde{\eta}_t^i}{ ilde{\eta}_t^i}}_{ ext{consumption}} + \underbrace{\rho\mathrm{d}t}_{ ext{consumption}}$$

■ Martingale condition relative to benchmark asset is

$$\mu_t^{\eta^i} + \rho - r_t^{bm} = \varsigma_t^i (\sigma_t^{\eta^i} - \sigma_t^{bm}) + \tilde{\varsigma}_t^i \tilde{\sigma}_t^{\tilde{i}}$$

■ Take η_t^i -weighted sum (across 2 types i = I, h here)

$$\rho - r_t^{bm} = \eta_t \varsigma_t^I (\sigma_t^{\eta} - \sigma_t^{bm}) + (1 - \eta_t) \varsigma_t^h \left(-\frac{\eta_t}{1 - \eta_t} \sigma_t^{\eta} - \sigma_t^{bm} \right) + \eta_t \tilde{\varsigma}_t^I \tilde{\sigma}_t^{\tilde{\eta}^{\tilde{l}}} + (1 - \eta_t) \tilde{\varsigma}_t^h \tilde{\sigma}_t^{\tilde{\eta}^{\tilde{b}}}$$

For log utility: $\varsigma_t^I = \sigma_t^{\eta}, \varsigma_t^h = -\frac{\eta_t}{1-\eta_t}\sigma_t^{\eta}, \tilde{\varsigma}_t^I = \tilde{\sigma}_t^{\tilde{\eta}^{\tilde{l}}}, \tilde{\varsigma}_t^h = \tilde{\sigma}_t^{\tilde{\eta}^{\tilde{l}}}$: $\rho - r_t^{bm} = \eta_t(\sigma_t^{\eta})^2 + (1-\eta_t)\left(-\frac{\eta_t}{1-\eta_t}\sigma_t^{\eta}\right)^2 + \eta_t(\tilde{\sigma}_t^{\tilde{\eta}^{\tilde{l}}})^2 + (1-\eta_t)(\tilde{\sigma}_t^{\tilde{\eta}^{\tilde{l}}})^2$

1. "Benchmark Asset Evaluation (FTPL) Equation"

- Real debt = benchmark asset *bm*
 - Redundant equation for allocation just useful for deriving risk-free rate in c-numeraire r_t^f (expressed in N_t -numeraire)
- Nominal debt/money = benchmark asset *bm*
 - Money evaluation equation (bubble) [FTPL Equation]
 - Replace: $r_t^{bm} = \mu_t^{\vartheta/\mathcal{B}} := \mu_t^{\vartheta} \mu_t^{\mathcal{B}} \sigma_t^{\mathcal{B}} (\sigma_t^{\vartheta} \sigma_t^{\mathcal{B}})$ (and $\sigma_t^{bm} = \sigma_t^{\vartheta}$)

$$\underbrace{\rho - \mu_t^{\vartheta/\mathcal{B}}}_{\text{excess return of } N_t} = \underbrace{\eta_t (\sigma_t^\eta)^2 + (1 - \eta_t) \left(-\frac{\eta_t}{1 - \eta_t} \sigma_t^\eta \right)^2 + \eta_t (\tilde{\sigma}_t^{\tilde{\eta}^{\tilde{l}}})^2 + (1 - \eta_t) (\tilde{\sigma}_t^{\tilde{\eta}^{\tilde{b}}})^2}_{\text{(required) "net worth weighted risk premium" (for holding risk in excess of money risk)}}_{}$$

1. "Benchmark Asset Evaluation (FTPL) Equation"

- Nominal debt/money = benchmark asset bm
 - Gov. liability evaluation equation (bubble) [FTPL Equation]
 - Replace: $r_t^{bm} = \mu_t^{\vartheta/\mathcal{B}} := \mu_t^{\vartheta} \mu_t^{\mathcal{B}} \sigma_t^{\mathcal{B}} (\sigma_t^{\vartheta} \sigma_t^{\mathcal{B}})$ (and $\sigma_t^{bm} = \sigma_t^{\vartheta}$)

$$\rho - \mu_t^{\vartheta/\mathcal{B}} = \eta_t(\sigma_t^{\eta})^2 + (1 - \eta_t) \left(-\frac{\eta_t}{1 - \eta_t} \sigma_t^{\eta} \right)^2 + \eta_t (\tilde{\sigma}_t^{\tilde{\eta}^{\tilde{l}}})^2 + (1 - \eta_t) (\tilde{\sigma}_t^{\tilde{\eta}^{\tilde{b}}})^2$$

Integrate:

$$\vartheta_t = \mathbb{E}_t \left[\int_t^{\infty} e^{-\rho(s-t)} \left(\eta_s(\sigma_s^{\eta})^2 + (1-\eta_s) \left(-\frac{\eta_t}{1-\eta_t} \sigma_t^{\eta} \right)^2 + \eta_s (\tilde{\sigma}_s^{\tilde{\eta}^{\tilde{l}}})^2 + (1-\eta_s) (\tilde{\sigma}_s^{\tilde{\eta}^{\tilde{b}}})^2 \right) \vartheta_s \mathrm{d}s \right]$$

2. η -Evolution: Drift μ_t^{η} (in N_t -numeraire)

■ Take difference from two earlier equations

$$\mu_t^{\eta} + \rho - r_t^{bm} = \varsigma_t^I (\sigma_t^{\eta} - \sigma_t^{bm}) + \tilde{\varsigma}_t^I \tilde{\sigma}_t^{\tilde{\eta}^{\tilde{l}}}$$

$$\rho - r_t^{bm} = \eta_t \varsigma_t^I (\sigma_t^I - \sigma_t^{bm}) + (1 - \eta_t) \varsigma_t^h \left(-\frac{\eta_t}{1 - \eta_t} \sigma_t^{\eta} - \sigma_t^{bm} \right) + \eta_t \tilde{\varsigma}_t^I \tilde{\sigma}_t^{\tilde{\eta}^{\tilde{l}}} + (1 - \eta_t) \tilde{\varsigma}_t^h \tilde{\sigma}_t^{\tilde{\eta}^{\tilde{b}}}$$

- Real Debt: $\sigma_t^{bm} = -\sigma_t^N = -\sigma$ (Recall $\sigma_t^{q^K} = 0$)
- Nominal Debt/Money $\sigma_t^{bm} = \sigma_t^{\vartheta} \sigma^{\mathcal{B}}$

2. η -Evolution: η -Aggregate Risk

- $\sigma_t^{\eta} = \sigma_t^{r^{bm}} + (1 \theta_t^I)(\sigma_t^{r^K} \sigma_t^{r^{bm}})$ $where portfolio share <math>1 \theta_t^I = \frac{\chi_t}{\eta_t}(1 \theta_t)$
- Real Debt
 - Note $\sigma_t^{r^k} = 0$ given $N_t = q_t^K K_t$ Numeraire
 - $\sigma_t^{\eta} = \frac{\chi_t \eta_t}{\eta_t} \sigma \text{ (recall } \vartheta_t = 0\text{)}$
 - No amplification since q^K is constant
 - Imperfect aggregate risk-sharing for $\chi_t \neq \eta_t$

2. Inflation Risk allows Perfect Risk Sharing

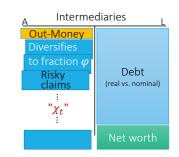
Nominal Debt

■ Note:
$$\sigma_t^{r^K} = \sigma_t^{1-\vartheta} = -\frac{\vartheta_t}{1-\vartheta_t}\sigma_t^{\vartheta}$$

• Use $\sigma_t^{\vartheta} = \frac{\vartheta'(\eta_t)}{\vartheta(\eta_t)} \eta_t \sigma_t^{\eta}$ and solve for $\eta_t \sigma_t^{\eta}$ yields

$$\eta_t \sigma_t^{\eta} = \frac{(\chi_t - \eta_t) \sigma_t^{\mathcal{B}}}{1 - \frac{\chi_t - \eta_t}{\eta_t} \left(\frac{-\vartheta'(\eta_t) \eta_t}{\vartheta(\eta_t)}\right)}$$

Intermediaries' balance sheet perfectly hedges agg. risk for $\sigma^{\mathcal{B}}=0$



Proposition:

Aggregate risk is perfectly shared for $\sigma^{\mathcal{B}} = 0!$

- Via inflation risk
- Stable inflation (targeting) would ruin risk-sharing
 - Example: Brexit uncertainty. Use inflation reaction to share risks within UK.

2. Within Type $\tilde{\eta}$ -Risk

■ Within intermediary sector

$$\tilde{\sigma}_t^{\tilde{\eta}^I} = (1 - \theta_t^I)\varphi\tilde{\sigma} = \frac{\chi_t}{\eta_t}(1 - \vartheta_t)\varphi\tilde{\sigma}$$

Within household sector

$$\tilde{\sigma}_t^{\tilde{\eta}^{\tilde{h}}} = (1 - \theta_t^h)\tilde{\sigma} = \frac{1 - \chi_t}{1 - \eta_t}(1 - \vartheta_t)\tilde{\sigma}$$

Solving for χ_t

■ Recall planner condition: (equality if $\chi_t < \bar{\chi}$)

Price of Risks	Real Debt	Nominal Debt with $\sigma^{\mathcal{B}} = 0$
$ \varsigma_t^I = \sigma_t^{\eta} $	$=\frac{\chi_t-\eta_t}{\eta_t}\sigma$	= 0
$\varsigma_t^h = -rac{\eta_t}{1-\eta_t}\sigma_t^\eta$	$=\frac{\chi_t-\eta_t}{1-\eta_t}\sigma$	= 0
$\tilde{\zeta}_t^I = -\frac{\chi_t}{\eta_t} (1 - \vartheta_t) \varphi \tilde{\sigma}$	$=rac{\chi_t}{\eta_t}arphi ilde{\sigma}$	$=rac{\chi_t}{\eta_t}(1-artheta_t)arphi ilde{\sigma}$
$ ilde{\zeta}_t^h = -\frac{1-\chi_t}{1-\eta_t}(1-\vartheta_t)\varphi\tilde{\sigma}$	$=rac{1-\chi_t}{1-\eta_t} ilde{\sigma}$	$=rac{1-\chi_t}{1-\eta_t}(1-artheta_t) ilde{\sigma}$

Solving for χ_t

■ Real debt:

$$\chi_t = \min\{\frac{\eta_t(\sigma^2 + \tilde{\sigma}^2)}{\sigma^2 + [(1 - \eta_t)\varphi^2 + \eta_t]\tilde{\sigma}^2}, \bar{\chi}\}$$

Nominal debt:

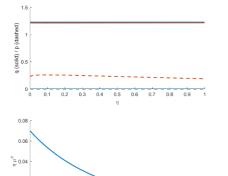
$$\chi_t = \min\{\frac{\eta_t}{(1 - \eta_t)\varphi^2 + \eta_t}, \bar{\chi}\}$$

Solution

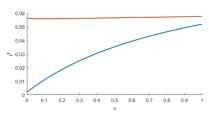
	Real Debt	Nominal Debt with $\sigma^{\mathcal{B}} = 0$
χ_t	$ \min \left\{ \frac{\eta_t(\sigma^2 + \tilde{\sigma}^2)}{\sigma^2 + [(1 - \eta_t)\varphi^2 + \eta_t]\tilde{\sigma}^2}, \bar{\chi} \right\} $ $ (1 - \eta_t) \left(\frac{\chi_t^2 \varphi^2}{\eta_t^2} - \frac{(1 - \chi_t)^2}{(1 - \eta)^2} \right) \tilde{\sigma}^2 $	$\chi_t = \min\{\frac{\eta_t}{(1-\eta_t)\varphi^2 + \eta_t}, \bar{\chi}\}$
μ_{t}^{η}	$(1-\eta_t)\left(rac{\chi_t^2arphi^2}{\eta_t^2}-rac{(1-\chi_t)^2}{(1-\eta)^2} ight) ilde{\sigma}^2$	$\chi_t = \min\left\{\frac{\eta_t}{(1-\eta_t)\varphi^2 + \eta_t}, \bar{\chi}\right\}$ $(1-\eta_t)(1-\vartheta_t)^2 \left(\frac{\chi_t^2 \varphi^2}{\eta_t^2} - \frac{(1-\chi_t)^2}{(1-\eta)^2}\right) \tilde{\sigma}^2$
σ_{t}^{η}	$rac{\chi_t - \eta_t}{\eta_t}\sigma$	0
q_t^K	$rac{1+\phi extbf{ extit{a}}}{1+\phi ho}$	$(1-\vartheta_t)\frac{1+\phi a}{(1-\vartheta_t)+\phi \rho}$
$q_t^{\mathcal{B}}$	0	$ heta_t rac{1+\phi a}{(1-artheta_t)+\phi ho}$
ϑ_t	0	$\rho - \mu_t^{\vartheta} + \mu_t^{\mathcal{B}} = (1 - \vartheta_t)^2 \left(\eta_t \frac{\chi_t^2 \varphi^2}{\eta_t^2} - (1 - \eta_t) \frac{(1 - \chi_t)^2}{(1 - \eta)^2} \right) \tilde{\sigma}^2$
ι_{t}	$rac{ extbf{\textit{a}} - ho}{1 + \phi ho}$	$\frac{(1-artheta_t)\mathbf{a}- ho}{(1-artheta_t)+\phi ho}$

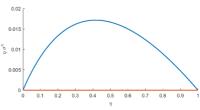
Example: Nominal Debt/Money with $\bar{\chi} = 1$

a = 0.15, ρ = 0.03, σ = 0.1, ϕ = 2, δ = 0.03, $\tilde{\sigma}^e$ = 0.2, $\tilde{\sigma}^h$ = 0.3, φ = 2/3, $\bar{\chi}$ = 1 Blue: real debt model, Red: nominal model



0.5 0.6 0.7





0.02

0.2

Contrasting Real with Nominal Debt

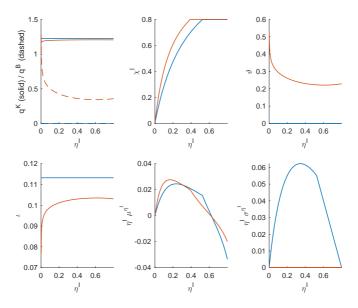
- Real debt model
 - Changes in η are absorbed by risk-free rate moves
 - Aggregate risk
 - $\iota(\eta)$ and $q^K(\eta)$ are constant
- Nominal debt/money model
 - Inflation risk completes markets
 - Perfect aggregate risk sharing
 - Banks balance sheet is perfectly hedged!!!
 - Risk-free rate is high
 - \bullet $\iota(\eta)$ and $q^K(\eta)$ are functions of η

Remark:

Both Settings: Real Debt and Money/Nominal Debt converge in the long-run to the "I Theory without I" steady state model of Lecture 06 if $\bar{\chi}=1$.

Example: Nominal Debt with Limit on Risk Offloading

 $\rho = 0.05, a = .15, \delta = .03, \phi = 2, \tilde{\sigma} = 0.5, \varphi = 0.4, \mu^{\mathcal{B}} = .01, \sigma^{\mathcal{B}} = 0, \bar{\chi} = .8$



Combining Nominal & Real Debt

- Adding real debt to money model does not alter the equilibrium, since
 - Markets are complete w.r.t. to aggregate risk (perfect aggregate risk sharing)
 - Markets are incomplete w.r.t. to idiosyncratic risk only
 - Real debt is a redundant asset
- Note: Result relies on absence of price stickiness

∂ Minimized at Stochastic Steady State

- Claim: $\vartheta(\eta)$ and average idiosyncratic risk exposure, $X(\eta)$, is minimized at the stochastic steady state of η .
 - Intuition: at steady state both sectors earn same risk premia + idiosyncratic seems well spread out ... less desire to hold money to self-insure
- With $\sigma_t^{\mathcal{B}} = 0, \forall t$ for steady state s,t, $\chi = \bar{\chi}$
 - lacksquare $\sigma_t^\eta=$ 0, (perfect risk sharing with nominal debt)

$$\mu_t^{\eta} = (\tilde{\sigma}_t^I)^2 - \eta_t(\tilde{\sigma}_t^I)^2 - (1 - \eta_t)(\tilde{\sigma}_t^h)^2 = (1 - \eta_t)(1 - \vartheta_t)^2 \underbrace{\left(\frac{\chi_t^2 \varphi^2}{\eta_t^2} - \frac{(1 - \chi_t)^2}{(1 - \eta_t)^2}\right)}_{-dX/d\eta} \tilde{\sigma}^2$$

■ Gov. liability evaluation (FTPL) equation

$$\rho - \mu_t^{\vartheta/\mathcal{B}} = \underbrace{(1 - \vartheta_t)^2 \overline{\left(\eta_t \frac{\chi_t^2 \varphi^2}{\eta_t^2} - (1 - \eta_t) \frac{(1 - \chi_t)^2}{(1 - \eta)^2}\right) \tilde{\sigma}^2}_{\eta_t(\tilde{\sigma}_t^l)^2 + (1 - \eta_t)(\tilde{\sigma}_t^h)^2}$$

where $\chi_t = \min\{\frac{\eta_t}{(1-\eta_t)\varphi^2+\eta_t}, \bar{\chi}\}$

Cashless/Bondless Limit with Discontinuity

- Removing cash/nominal gov. bonds (comparative static)
 - $\mathbb{B} > 0$ vs. $\mathcal{B} = 0$
 - Price flexibility ⇒ Neutrality of money
 - Discontinuity at $\lim_{\mathcal{B}\to 0}$
 - Remark:
 - Different from Woodford (2003) medium of exchange role of money
 CIA becomes relevant for fewer and fewer goods
- Inflation on nominal claims (bond/cash)
 - Change $\mu^{\mathcal{B}}$ and subsidize capital
 - Continuous process

Overview

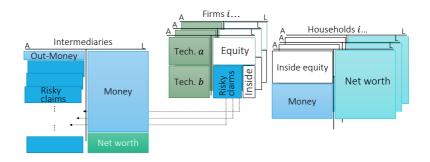
- Intro
- Equivalence btw Experts Producers and Intermediaries
- Real vs. Nominal Debt: Unit of Account in Incomplete Markets Setting
- I Theory of Money
 - Liquidity and Deflationary Spiral
 - Banks as Diversifiers $\Rightarrow \tilde{\sigma}(\cdot)$ is a Function of Banks' Capitalization η_t
- Policy with Long-Dated Bonds

I Theory of Money

- Aim: intermediary sector is not perfectly hedged (connection to nominal debt in previous slides)
- Idiosyncratic risk that HH have to bear is time-varying $\tilde{\sigma}(\eta)$ (connection to nominal debt in previous slides)
- Needed: Intermediaries' aggregate risk ≠ aggregate risk of economy

Technology	a	b
Capital share (Leontief)	$1-ar{\kappa}$	$ar{\kappa}$
Risk	$\frac{dk_t^{a,\tilde{i}}}{k_t^{a,\tilde{i}}} = (\cdot)dt + \sigma^a dZ_t + \tilde{\sigma} d\tilde{Z}_t^{\tilde{i}}$	$\frac{dk_t^{b,\tilde{i}}}{k_t^{b,\tilde{i}}} = (\cdot)dt + \sigma^b dZ_t + \tilde{\sigma}d\tilde{Z}_t^{\tilde{i}}$
Intermediaries	No	Yes, reduce $ ilde{\sigma}$ to $arphi ilde{\sigma}$
Excess risk	$-ar{\kappa}(\sigma^b-\sigma^a)-rac{\sigma^\vartheta-\sigma^\mathcal{B}}{1-artheta}$	$(1 - \bar{\kappa})\underbrace{(\sigma^b - \sigma^a)}_{=\sigma} - \frac{\sigma^{\vartheta} - \sigma^{\mathcal{B}}}{1 - \vartheta}$

I Theory: Balance Sheets



Frictions:

- Household cannot diversify idio risk
- Limited risky claims issuance
- Only nominal deposits

0. Postulate Aggregates and Processes

- Total output: $Y_t = [A_t^a(1-\bar{\kappa}) + A_t^b\bar{\kappa}]K_t$
- Aggregate capital evolution: $\frac{dK_t}{K_t} = (\Phi(\iota_t) \delta) dt + \underbrace{[(1 \bar{\kappa})\sigma^a + \bar{\kappa}\sigma^b]}_{-\sigma^K} dZ_t$
- Return process (for $x \in \{a, b\}$):

$$dr_t^{\chi}(\iota_t) = \left\{ \frac{A_t^{\chi} - \iota_t}{q_t^{\kappa}} + \Phi(\iota_t) - \delta + \mu_t^{q^{\kappa}} + \sigma^{\chi} \sigma_t^{q^{\kappa}} + \frac{q_t^{\mathcal{B}}}{q_t^{\kappa}} \left[\mu_t^{\mathcal{B}} + (\sigma_t^{q^{\mathcal{B}}} - \sigma_t^{\mathcal{B}}) \sigma_t^{\mathcal{B}} \right] \right\} dt + \left(\sigma^{\chi} + \sigma_t^{q^{\kappa}} + \frac{q_t^{\mathcal{B}}}{q_t^{\kappa}} \sigma_t^{\mathcal{B}} \right) dZ_t + \tilde{\sigma} d\tilde{Z}_t^{\tilde{i}},$$

Outside equity:

$$\mathrm{d}r_t^{OE,I} = r_t^{OE} \mathrm{d}t + \left(\sigma^b + \sigma_t^{q^K} + \frac{q_t^B}{q_t^K} \sigma_t^B\right) \mathrm{d}Z_t + \varphi \tilde{\sigma} \mathrm{d}\tilde{Z}_t^{\tilde{i}}$$

■ Household return: $\mathrm{d} r_t^{OE,h} = \mathrm{d} r_t^{OE,I} + (1-\varphi)\tilde{\sigma} \mathrm{d} \tilde{Z}_i^{\tilde{l}}$

Overview: The Role of Each Model Ingredient

- $\bar{\chi}$ avoid degenerated distribution (households dying out)
- $\blacksquare \varphi$
- \blacksquare if $\varphi = 1$ intermediaries would die out,
- ullet if $\varphi = 0$ don't earn risk premium (except for aggregate risk)
- $\sigma^b > \sigma^a$ avoid perfect hedging for intermediaries
 - except $\sigma^{\mathcal{B}} \neq 0$ for example risk-free asset is in zero net supply (like AER paper/handbook chapter)
- Fraction $\bar{\kappa}$ of K has aggregate risk of $\sigma = \sigma^b \sigma^a$, rest has risk of zero (it's exogenous) (allocation does not determine total risk in aggregate economy) (To keep it clean (taste choice): price-taking planner's choice is less involved)

1. Portfolio Choice: Price-taking Planner's Allocation

Minimize weighted average cost of financing

$$\min_{\chi_t \leq \bar{\chi}} (1 - \bar{\chi}) \varsigma_t^h \sigma_t^{\mathsf{x} \mathsf{K}^{\mathsf{a}}} + (\varsigma_t^{\mathsf{I}} \chi_t + \varsigma_t^h (\kappa - \chi_t)) \sigma_t^{\mathsf{x} \mathsf{K}^{\mathsf{b}}} + (\tilde{\varsigma}_t^{\mathsf{I}} \varphi \chi_t + \tilde{\varsigma}_t^h (1 - \chi_t)) \tilde{\sigma}$$

■ FOC: (equality if $\chi_t < \bar{\chi}$)

$$\varsigma_t^I \sigma_t^{\mathsf{x}\mathsf{K}^b} + \tilde{\varsigma}_t^I \varphi \tilde{\sigma} \leq \varsigma_t^h \sigma_t^{\mathsf{x}\mathsf{K}^b} + \tilde{\varsigma}_t^h \tilde{\sigma}$$

$$\sigma_t^{\mathsf{x}\mathsf{K}^b} = (1 - \bar{\kappa})\sigma - \frac{\sigma^\vartheta - \sigma^\mathcal{B}}{1 - \vartheta}$$

	Intermediaries	Households
Aggregate risk	$ \varsigma_t^I = \sigma_t^{\eta} $	$ \varsigma_t^h = -\frac{\eta_t}{1-\eta_t} \sigma_t^{\eta} $
Idiosyncratic Risk	$ ilde{arsigma_t^I} = rac{\chi_t}{\eta_t} (1 - artheta_t) arphi ilde{\sigma}$	$ ilde{arsigma}_t^h = rac{1-\chi_t}{1-\eta_t}(1-artheta_t) ilde{\sigma}_t$

$$\begin{split} \sigma_t^{\eta} \left((1 - \bar{\kappa}) \sigma - \frac{\sigma^{\vartheta} - \sigma^{\mathcal{B}}}{1 - \vartheta} \right) + \left[\frac{\chi_t}{\eta_t} (1 - \vartheta_t) \varphi \tilde{\sigma} \right] \varphi \tilde{\sigma} \leq \\ - \frac{\eta_t \sigma_t^{\eta}}{1 - \eta_t} \left((1 - \bar{\kappa}) \sigma - \frac{\sigma^{\vartheta} - \sigma^{\mathcal{B}}}{1 - \vartheta} \right) + \left[\frac{1 - \chi_t}{1 - \eta_t} (1 - \vartheta_t) \tilde{\sigma} \right] \tilde{\sigma} \end{split}$$

1. Money/Bond (FTPL) Evaluation + 2. η -Drift

- As before in money/nominal debt model
- Money/bond evaluation (FTPL equation)

$$\rho - \mu_t^{\vartheta/\mathcal{B}} = \eta_t \left[(\sigma_t^{\eta})^2 + (\tilde{\sigma}_t^{\tilde{\eta}^{\tilde{l}}})^2 \right] + (1 - \eta_t) \left[\left(\frac{\eta_t}{1 - \eta_t} \sigma_t^{\eta} \right)^2 + (\tilde{\sigma}_t^{\tilde{\eta}^{\tilde{b}}})^2 \right]$$

 \blacksquare η -drift

$$\mu_t^{\eta} = (1 - \eta_t) \left[(\sigma_t^{\eta})^2 + (\tilde{\sigma}_t^{\tilde{\eta}^{\tilde{l}}})^2 - \left(\frac{\eta_t}{1 - \eta_t} \sigma_t^{\eta} \right)^2 - (\tilde{\sigma}_t^{\tilde{\eta}^{\tilde{h}}})^2 \right] - \sigma_t^{\eta} \underbrace{\sigma_t^{\vartheta/\mathcal{B}}}_{\sigma_t^{\vartheta} - \sigma^{\mathcal{B}}}$$

η_t -Volatility and Amplification

$$\sigma_t^{\eta} = \sigma_t^{\vartheta} - \sigma_t^{\mathcal{B}} + (1 - \vartheta_t) \frac{\chi_t}{\eta_t} \left((1 - \bar{\kappa}) \sigma - \frac{\sigma_t^{\vartheta} - \sigma_t^{\mathcal{B}}}{1 - \vartheta} \right)$$
$$\Rightarrow \eta_t \sigma_t^{\eta} = \frac{(1 - \vartheta_t) \chi_t (1 - \bar{\kappa}) \sigma + (\chi_t - \eta_t) \sigma_t^{\mathcal{B}}}{1 - \frac{\chi_t - \eta_t}{\eta_t} \left(\frac{-\vartheta'(\eta_t) \eta_t}{\vartheta(\eta_t)} \right)}$$

Note that: $\frac{-\vartheta'(\eta_t)\eta_t}{\vartheta(\eta_t)} = (1 - \vartheta_t) \left(\frac{q^{\kappa'}(\eta_t)\eta_t}{q^{\kappa}(\eta_t)} + \frac{-q^{\mathcal{B}'}(\eta_t)\eta_t}{q^{\mathcal{B}}(\eta_t)} \right)$ Liquidity spiral Disinflationary spiral

I Theory: Summary

Equations

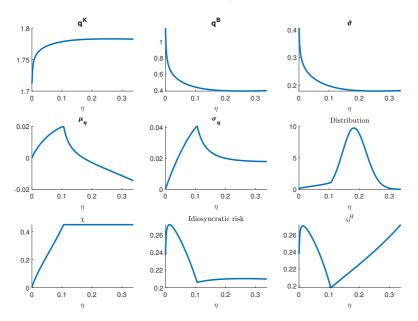
- Money evaluation equation: $\rho \mu^{\vartheta} + \mu^{\mathcal{B}} \sigma^{\mathcal{B}}(\sigma^{\mathcal{B}} \sigma^{\vartheta}) = [...]$
- η -drift: $\mu^{\eta} = [...] \sigma^{\eta}(\sigma^{\vartheta} \sigma^{\mathcal{B}}); \eta$ -vol: $\sigma^{\eta} = (ampli-equation)$
- Itô's Lemma: $\vartheta \mu^{\vartheta} = \eta \mu^{\eta} \partial_{\eta} \vartheta(\eta) + \frac{1}{2} \eta^{2} (\sigma^{\eta})^{2} \partial_{\eta \eta} \vartheta(\eta)$
- Planner's condition for χ .
- Idiosyncratic risks $\tilde{\sigma}^{\tilde{\eta}^{\tilde{x}}}(\eta), x \in \{I, h\}.$

Algorithms

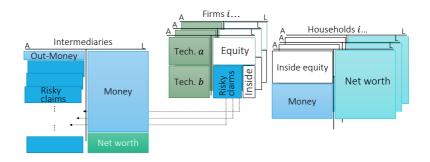
- **1** Construct grid for η , guess $\vartheta(\eta)$
- **2** Compute $\sigma^{\eta}(\eta), \chi(\eta)$ for every η
- **3** Compute $\mu^{\eta}(\eta)$, $\tilde{\sigma}^{\tilde{\eta}^{\tilde{x}}}(\eta)$, $x \in \{I, h\}$ for every η
- 4 Update $\vartheta(\eta)$ by adding pseudo-time step.
- 5 Repeat 2 4 until it converges.

I Theory: Solutions

 $\rho = 0.05, a = .5, \delta = .03, \phi = 2, \tilde{\sigma} = 0.4, \varphi = 0.2, \mu^{\mathcal{B}} = 0, \sigma^{\mathcal{B}} = 0, \bar{\chi} = .45$



I Theory: Balance Sheets



Frictions:

- Household cannot diversify idio risk
- Limited risky claims issuance
- Only nominal deposits

Consequences of a Shock in 4 Steps

- 1. Shock: destruction of some capital
 - % loss in intermediaries net worth > % loss in assets
 - Leverage shoots up
 - Intermediaries %-loss > Household %-losses
 - \blacksquare η -derivative shifts losses to intermediaries
- 2. Response: shrink balance sheet / delever
 - For given prices no impact
- 3. Asset side: asset price q^K shrinks
 - Further losses, leverage ↑, further deleveraging
- 4a. Liability side: Banks' money supply declines value of money $q^{\mathcal{B}}$ rises
- 4b. Households' money demand rises
 - HH face more idiosyncratic risk (can't diversify)

Paradox of Prudence

Liquidity Spiral

4a.+4b. Disinflationary Spiral

Overview

- Intro
- Equivalence btw Experts Producers and Intermediaries
- Real vs. Nominal Debt: Unit of Account in Incomplete Markets Setting
- I Theory of Money
 - Liquidity and Deflationary Spiral
 - Banks as Diversifiers $\Rightarrow \tilde{\sigma}(\cdot)$ is a Function of Banks' Capitalization η_t
- Policy with Long-Dated Bonds

Policy

Fiscal Policy

- $\blacksquare \mu_t^{\mathcal{B}}$ affects only drift of ϑ_t
- $\sigma_t^{\mathcal{B}}$ affects the risk of money/nominal bond value and agents portfolio choice (reaction to aggregate shock) ...
- Alternative: policy impacts ds (or $d\tau$)
- "Pure" Monetary policy without fiscal implications
 - i_t, σ_t^i , (reaction to aggregate shock) (no $\mu_t^{\mathcal{M}}$ in this lecture)
 - Definition of "Pure":
 Change in Monetary Policy has no immediate direct fiscal implications.
 - Surplus to debt ratio, $s_t/q_t^{\mathcal{B}}$, is not affected.
 - (it might alter growth rate and hence fiscal situation)
- Macroprudential policy

Fiscal Policy

Fiscal authority pick s_t or $\mu_t^{\mathcal{B}}$?

- If gov. can choose $d\tau_t^{i,\tilde{i}}$ subject to budget constraint $(i \in \{I,h\})$ $\sum_i \int_{\tilde{i}} d\tau_t^{i,\tilde{i}} = d\vartheta$ (seigniorage) it can essentially complete markets
 - Recall: If transfers proportional to
 - 1. Output (= capital, if all a are the same)
 - 2. Bond holdings => no real impact
 - 3. Net worth \Rightarrow btw 1. and 2.
- Intra-temporal Transfer Policy
 - If gov. is constrained to make only sector-specific transfers $\tau_t^{i,\tilde{i}} = \tau_t^i$ it can effectively control η_t^i (an be micro-founded by agents' hidden savings)
- Inter-temporal Transfer Policy
 - Focus on bond supply $(\mu_t^{\mathcal{B}}, \sigma_t^{\mathcal{B}})$ seigniorage is rebated to capital holders (by lowering output tax)
 - $\blacksquare \mu_t^{\mathcal{B}}$ affects only drift of ϑ_t
 - $\sigma_t^{\mathcal{B}}$ affects the risk of money/nominal bond value and agents portfolio choice (reaction to aggregate shock) ...

Monetary Policy: Neo-Fisherian

- Definition of "Pure MoPo":
 Change in Monetary Policy has no immediate direct fiscal implications.
- Interest rates on bond/reserves i_t is paid to bond holders.
- Fisher Equation (in setting with aggregate risk)

$$dr_t^{\mathcal{B}} = i_t dt + \frac{d(1/P_t)}{1/P_t} = i_t dt + \frac{d(q_t^{\mathcal{B}} K_t/B_t)}{q_t^{\mathcal{B}} K_t/B_t}$$
$$= \left\{ i_t + \Phi(\iota_t) - \delta + \mu_t^{q^{\mathcal{B}}} - \left[\mu_t^{\mathcal{B}} + (\sigma_t^{q^{\mathcal{B}}} - \sigma_t^{\mathcal{B}}) \sigma_t^{\mathcal{B}} \right] \right\} dt + (\sigma_t^{q^{\mathcal{B}}} - \sigma_t^{\mathcal{B}}) dZ_t$$

To study monetary policy without fiscal implications, then set $\sigma_t^{\mathcal{B}} = 0$:

- Unexpected permanent increase in i_t at t = 0,
- 1. Option "Pure MoPo": keep $\mu_t^{\mathcal{B}}$ constant, i.e., $\mu_t^{\mathcal{B}}$ increases
- ⇒ increases inflation (one-for-one)
- "Neo-Fisherian" "super-neutrality of money (growth)"

Introducing Long-term Government Bonds

- Long-term bond
 - yields fixed coupon interest rate on face value $F^{(i,m)}$
 - \blacksquare Matures at random time with arrival rate 1/m
 - Nominal price of the bond $P_t^{\mathcal{B}(i,m)}$
 - Nominal value of all bonds outstanding of a certain maturity:

$$\mathcal{B}_t^{(m)} = P_t^{\mathcal{B}(i,m)} F^{(i,m)}$$

- Nominal value of all bonds $\mathcal{B}_t = \sum_m \mathcal{B}_t^{(m)}$
- Special bonds
 - lacksquare Reserves: $\mathcal{B}_t^{(0)}$ and note $P_t^{\mathcal{B}(0)}=1$ (long-term but floating interest rate)
 - Consol bond: $\mathcal{B}_t^{(\infty)}$

Debt Evolution w/o Fiscal Implications

$$d\mathcal{B}_{t}^{(0)} = i_{t}\mathcal{B}_{t}^{(0)}dt + \sum_{i,m} \left[\left(i + \frac{1}{m} \right) F_{t}^{(i,m)}dt - \frac{\mathcal{B}_{t}^{(i,m)}}{F_{t}^{(i,m)}} (dF_{t}^{(i,m)} + \frac{1}{m} F_{t}^{(i,m)}dt) \right]$$

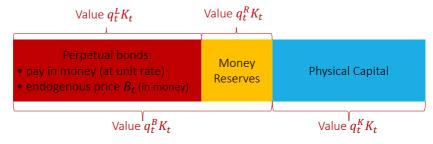
- Reserves $\mathcal{R}_t := \mathcal{B}_t^{(0)}$ is different since it pays floating interest rate i_t
- If we have only consol bond and T-bills (=reserves if no medium of exchange friction), then

$$d\mathcal{B}_{t}^{(0)} + \frac{\mathcal{B}_{t}^{(i,\infty)}}{F_{t}^{(i,\infty)}} dF_{t}^{(i,\infty)} = i_{t} \mathcal{B}_{t}^{(0)} dt + i F_{t}^{(i,\infty)} dt$$
$$d\mathcal{R}_{t} + \mathcal{P}_{t}^{L} dF_{t}^{L} = i_{t} \mathcal{R}_{t} dt + r^{L} F_{t}^{L} dt$$

New Notation: $\mathcal{B}_t^{(0)} = \mathcal{R}_t, F_t^{(i,\infty)} = F_t^L$

Introducing Long-term Gov. Bond

- Introduce long-term (perpetual) bond
 - No default . . .
 - MoPo s.t. gov. bonds are held by intermediaries in equilibrium



■ Value of long-term fixed *i*-bond is endogenous

$$\mathrm{d}P_t^L/P_t^L = \mu_t^{P^L} \mathrm{d}t + \sigma_t^{P^L} \mathrm{d}Z_t$$

"Pure" Monetary Policy with Long-term Bonds

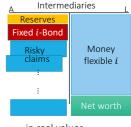
■ Unexpected permanent cut in i_t at t=0

1. Sim's Stepping on the Rake

- At t = 0 on impact: as all $\mathcal{B}_0^{(m>0)}$ jump $\Rightarrow \mathcal{P}_0$ jumps up
- For t > 0: inflation π_t is higher like in Neo-Fisherian setting
- If long-term bonds are held proportionally to net-worth, then all citizens are affected proportionally.

2. In I Theory

- Intermediaries are long long-term bonds and are short short-term money
- Households are long short-term money paying i_t
- Policy is Redistributive "stealth recapitalization"
 - Long term bond price ↑
 - $\blacksquare \Rightarrow \eta_t \uparrow \Rightarrow \text{risk premia } (\varsigma_t^I \sigma, \tilde{\varsigma}_t^I \tilde{\sigma}_t) \downarrow$



in real values

Analysis with Long-term Consol Bonds and Reserves

Define fraction of value of bonds that are not in short-term reserves

$$\vartheta_t^L = \frac{P_t^L F_t^L}{\mathcal{B}_t},$$

■ Let's postulate the price of a single long-term consol bond:

$$\frac{\mathrm{d}P_t^L}{P_t^L} = \mu_t^{P^L} \mathrm{d}t + \sigma_t^{P^L} \mathrm{d}Z_t$$

■ In the total net worth numeraire the martingale pricing condition:

$$\mathbb{E}[\mathrm{d}r_t^L - \mathrm{d}r_t^{\mathcal{R}}] = \sigma_t^{P^L} \sigma_t^{\eta}$$

• for now assuming that only intermediaries find it worthwhile to hold consul bonds

$$\mathrm{d}r_t^L = \mathrm{d}r_t^{\mathcal{R}} + \sigma_t^{P^L} \sigma_t^{\eta} \mathrm{d}t + \sigma_t^{P^L} \mathrm{d}Z_t$$

0. Postulate Return Processes

- Return of total bond portfolio (in total net worth numeraire)
- \bullet $\mathrm{d}r_t^{\mathcal{B}} = \mu_t^{\vartheta} \mathrm{d}t + \sigma_t^{\vartheta} \mathrm{d}Z_t$ (since no fiscal implications)

- Return of a single coin (reserve unit/short-term bond)
- $\vartheta_t^L \sigma_t^{P^L}$ shows importance of long-term bond price variation
 - The dZ_t -term is a "risk-transfer"
 - The *dt*-term shows that it also affects risk premia.

η -Drift, Volatility and Amplification

Note that money is our benchmark asset (since HH cannot go short L-bond)

■ Where portfolio share $1 - \theta_t^{\mathcal{R},I} - \theta_t^{L,I} = \frac{\chi_t}{\eta_t} (1 - \vartheta_t)$ and $\theta_t^{L,I} = \vartheta_t^L \vartheta_t / \eta_t$

$$\begin{split} \sigma_t^{\eta} &= \sigma_t^{\vartheta} - \vartheta_t^L \sigma_t^{\rho^L} + \frac{\chi_t (1 - \vartheta_t)}{\eta_t} \left((1 - \bar{\kappa}) \sigma - \frac{\sigma_t^{\vartheta}}{1 - \vartheta} + \vartheta_t^L \sigma_t^{\rho^L} \right) + \frac{\vartheta_t^L \vartheta_t}{\eta_t} \sigma_t^{\rho^L} \\ &= \sigma_t^{\vartheta} - \vartheta_t^L \sigma_t^{\rho^L} + \frac{\chi_t (1 - \vartheta_t)}{\eta_t} \left((1 - \bar{\kappa}) \sigma - \frac{\sigma_t^{\vartheta}}{1 - \vartheta} \right) + \frac{\chi(1 - \vartheta_t) + \vartheta_t - \eta_t}{\eta_t} \vartheta_t^L \sigma_t^{\rho^L} \end{split}$$

■ Replace: $\sigma_t^{\vartheta} = \frac{\vartheta'(\eta_t)\eta_t}{\vartheta(\eta_t)}\sigma_t^{\eta}$ and $\sigma_t^{P^L} = \frac{P^{L'}(\eta)\eta_t}{P^L(\eta)}\sigma_t^{\eta}$

$$\eta_t \sigma_t^{\eta} = \frac{(1 - \vartheta_t) \chi_t (1 - \bar{\kappa}) \sigma}{1 - \frac{\chi_t - \eta_t}{\eta_t} \left(-\frac{\vartheta'(\eta_t) \eta_t}{\vartheta(\eta_t)} \right) + \vartheta_t^L \left(\frac{P^{L'}(\eta) \eta_t}{P^L(\eta)} \sigma_t^{\eta} \right) \frac{\chi_t (1 - \vartheta_t) + \vartheta_t - \eta_t}{\eta_t}}$$

■ Recall:
$$\frac{-\vartheta'(\eta_t)\eta_t}{\vartheta(\eta_t)} = (1 - \vartheta_t) \left(\frac{q^{\kappa'}(\eta_t)\eta_t}{q^{\kappa}(\eta_t)} + \frac{-q^{\mathcal{B}'}(\eta_t)\eta_t}{q^{\mathcal{B}}(\eta_t)} \right)$$
, mitigation term due to policy Liquidity spiral Disinflationary spiral

 $\blacksquare \mu_t^{\eta}$ same steps as before.

MoPo Benchmark 0: Inflation Targeting

- Pick a particular $\sigma_t^{\mathcal{B}}$, so that inflation at a constant rate.
 - $lack \Rightarrow$ Price level moves deterministically at a constant drift no loading on $\mathrm{d}Z_t$ -term.
 - Recall from real-vs.-nominal bond lecture: Inflation risk might not help to "complete markets".
- Remark:
 - $q_t^{\mathcal{B}}$ can still jump (unlike in a setting with price stickiness see later lecture)

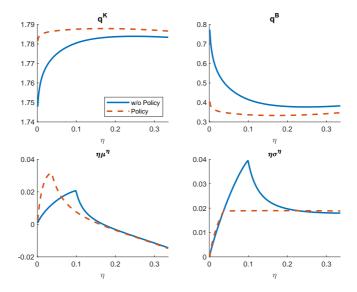
MoPo Benchmark 1: Removing Endogenous Risk

- \blacksquare The policy that removes endogenous risk, $\sigma_t^{\mathcal{B}} = \sigma_t^{\vartheta}$
- FOC gives:

$$\chi_t = \min \left\{ \frac{\eta_t}{\eta_t + (1 - \eta_t)\phi^2 + (1 - \bar{\kappa})^2 (\sigma^b)^2 / \tilde{\sigma}^2}, \bar{\chi} \right\}$$

- η -Evolution:closed form up to ϑ_t (which is choice of planner)
 - $\sigma_t^{\eta} = (1 \vartheta_t) \frac{\chi_t}{\eta_t} (1 \bar{\kappa}) \sigma^b$
- Bond valuation equation: same as in page 41

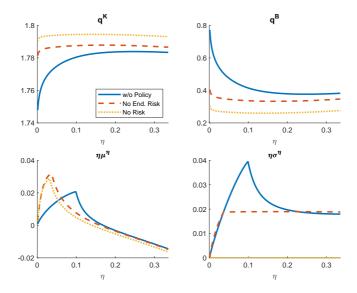
MoPo Benchmark 1: Removing Endogenous Risk



MoPo Benchmark 2: Perfect Aggregate Risk Sharing

- lacksquare Special case of Benchmark 1: Policy that ensures that $\sigma_t^\eta o 0$
- Aggregate risk exposure of all households and intermediaries is proportional to σ^K and η_t , q_t^K , and q_t^B have no volatility.
- Remarks:
 - stochastic steady state moves closer to zero and $\sigma^{\eta}=0$.
 - Boundary condition $\eta_t^I = 0$ plays no role anymore.
 - Leverage goes to infinity as $\eta_t \to 0$

MoPo Benchmark 2: Perfect Aggregate Risk Sharing



MoPo Benchmark 2: Perfect Aggregate Risk Sharing

- lacksquare Special case of Benchmark 1: Policy that ensures that $\sigma_t^\eta o 0$
- Aggregate risk exposure of all households and intermediaries is proportional to σ^K and η_t , q_t^K , and q_t^B have no volatility.
- Remarks:
 - Stochastic steady state moves closer to zero and $\sigma^{\eta} = 0$.
 - Boundary condition $\eta_t^I = 0$ plays no role anymore.
 - Leverage goes to infinity as $\eta_t \to 0$

Macroprudential Policy

- Monetary Policy cannot provide insurance and control risk taking at the same time.
 - Leverage rises endogenously the more risk sharing becomes possible.
 - Value of nominal bonds/money ϑ falls with perfect risk sharing
 - Might have adverse welfare implications
- ⇒ Macroprudential Policy
 - Restrict intermediaries' leverage
 - Regulators simply "controls" intermediaries (and households) portfolio decisions $\boldsymbol{\theta}_t^i$

Optimal Policy

■ Future lecture after we have covered welfare analysis

Recall

- Unified macro "Money and Banking" model to analyze
 - Financial stability Liquidity spiral
 - Monetary stability Fisher disinflation spiral
- Exogenous risk &
 - Sector specific
 - Idiosyncratic
- Endogenous risk
 - Time varying risk premia flight to safety
 - Capitalization of intermediaries is key state variable
- Monetary policy rule
 - Risk transfer to undercapitalized critical sectors "Bottleneck Approach"
 - Income/wealth effects are crucial instead of substitution effect
 - Reduces endogenous risk better aggregate risk sharing
 - Self-defeating in equilibrium excessive idiosyncratic risk taking

Paradox of Prudence

Flipped Classroom Experience

Series of 4 YouTube videos, each about 10 minutes

