Eco529: Macro, Money, and Finance Lecture 06: Money

Markus Brunnermeier

Princeton University

Summer, 2025

Outline

1 Money Model

- Model Setup
- Frictionless Benchmark
- Adding Financial Frictions
- Adding Monetary Frictions
- \blacksquare Separating Money $\mathcal M$ and Gov. Bonds $\mathcal B$

2 Monetary Policy

- "Pure" Monetary Policy vs. with Fiscal Implications
- Sims' Stepping on the Rake with Long-Maturity Bonds
- Quantitative Easing

3 Monetary Fiscal Connection

- Inflation–Fiscal Link
- Sargent-Wallace's Unpleasant Monetary Arithmetic

4 Price Level Determination

- Fiscal Backing and the Fiscal Theory of the Price Level
- Bubble Theories and (In-)Determinacy
- "Pure" Unit of Account Theory

The 3 Roles of Money

Store of value

- fundamental cash flows due to backing
 - e.g., commodity standard, exchange rate regime, fiscal backing
- non-cash-flow benefits: helps overcome *intertemporal* financial frictions
 e.g., OLG (Samuelson), spatial separation (Townsend), uninsured idiosyncratic risk (Bewley)
- store of value role not exclusive to money: non-monetary assets are substitute stores of values

Medium of exchange

- helps overcome monetary frictions = frictions in *intratemporal* exchange
- key monetary friction: double coincidence of wants problem
- makes money special relative to assets, which cannot serve as substitute media of exchange

Unit of account

- contractual values denominated in monetary unit
- e.g., nominal goods prices (+ commitment to sell at quoted price), nominal debt contracts, nominal labor contracts

The Value of Money and the Price Level

- Core question of monetary economics: what determines the general level of nominal goods prices?
- Equivalently: what are the determinants of the value of money?
 - price level \mathcal{P}_t : price of real goods basket in units of money
 - real value of a single unit of money: $1/\mathcal{P}_t$
- Two aspects:
 - which economic considerations justify the value of money in a given equilibrium?
 determinacy question:
 - does the model have a unique prediction for the value of money / price level?
 (~ equilibrium uniqueness)
 - more broadly, which economic forces lead to coordination on a specific monetary equilibrium?

Classification of Monetary Theories

- **Backing theories**: value of money derives from fundamental cash flows that back it
 - store of value role (money is just another asset)
 - example: Fiscal Theory of the Price Level (FTPL)
- **Bubble theories**: money valued because it can be passed on to others can be rational expectation if trading money overcomes market frictions:
 - intertemporal financial frictions (e.g., incomplete markets)
 - emphasizes store of value role
 - examples: Samuelson, Townsend, Bewley, Brunnermeier-Merkel-Sannikov
 - 2 intratemporal monetary frictions (e.g., cash-in-advance constraint)
 - emphasizes medium of exchange role
 - example: (New) Monetarism

8 Money as a pure unit of account

- value of money derives from role of money as a unit of account
- not from the value of any monetary assets
- example: New Keynesianism

Monetary Assets: Credit, Deposits, Cash, Reserves, Government Debt

In first two classes of theories, different assets may play the role of "money":

- Credit can substitute for
 - store of value assets (credit balances to keep track of resource distribution)
 - media of exchange (exchange goods against credit balance)

imperfect credit prerequisite for bubble theories

- Bank deposits, cash, and central bank reserves all play a role in the payment system as media of exchange
- Government-provided outside money vs. inside money
 - outside money: positive net supply, backed by government fiscal capacity
 - inside money: zero net supply, backed by bank assets
- Cash & reserves (narrow outside money) vs. nom. government liabilities (broad outside money)
 - (primarily) narrow money provides medium of exchange services
 - but all nominal government liabilities
 - compete for the same backing real resources
 - serve as a store of value
 - are affected symmetrically by changes in the price level

A Unified Model of Money

Next: develop and solve a simple model that illustrates several monetary theories

- fiscal theory of the price level (backing theory)
- money as a safe asset (store of value bubble theory)
- money providing transaction services (medium of exchange bubble theory)
- For now, we disregard the determinacy question
 - we always select a specific equilibrium: the monetary steady state
 - will return to the determinacy question in the end

Outline

1 Money Model

Model Setup

- Frictionless Benchmark
- Adding Financial Frictions
- Adding Monetary Frictions
- \blacksquare Separating Money $\mathcal M$ and Gov. Bonds $\mathcal B$

2 Monetary Policy

- "Pure" Monetary Policy vs. with Fiscal Implications
- Sims' Stepping on the Rake with Long-Maturity Bonds
- Quantitative Easing

3 Monetary Fiscal Connection

- Inflation–Fiscal Link
- Sargent-Wallace's Unpleasant Monetary Arithmetic

4 Price Level Determination

- Fiscal Backing and the Fiscal Theory of the Price Level
- Bubble Theories and (In-)Determinacy
- "Pure" Unit of Account Theory

Model with Money

• Continuum of (heterogeneous) agents $\tilde{i} \in [0, 1]$: choose $c_t^{\tilde{i}}$, $\theta_t^{\tilde{i}}$, $\iota_t^{\tilde{i}}$ to maximize

$$\mathbb{E}\left[\int_{0}^{\infty} e^{-\rho t} \left(\log c_{t}^{\tilde{i}} + f(\mathscr{G}_{t}K_{t})\right) dt\right]$$

s.t.
$$\frac{\mathrm{d}n_{t}^{\tilde{i}}}{n_{t}^{\tilde{i}}} = -\frac{c_{t}^{\tilde{i}}}{n_{t}^{\tilde{i}}} \mathrm{d}t + \mathrm{d}r_{t}^{\mathcal{M}} + (1 - \theta_{t}^{\tilde{i}})(\mathrm{d}r_{t}^{\mathcal{K},\tilde{i}}(\iota_{t}^{\tilde{i}}) - \mathrm{d}r_{t}^{\mathcal{M}}) \& n_{t}^{\tilde{i}} \ge 0$$

Each agent operates physical capital kⁱ_t

output (net of investment & transaction cost): $y_t^{\tilde{i}} dt = (ak_t^{\tilde{i}} - \nu_t^{\tilde{i}} k_t^{\tilde{i}} - \mathfrak{T}_t(\nu_t^{\tilde{i}}) k_t^{\tilde{i}}) dt$ $\frac{dk_t^{\tilde{i}}}{k_t^{\tilde{i}}} = \left(\Phi(\nu_t^{\tilde{i}}) - \delta\right) dt + \tilde{\sigma} d\tilde{Z}_t^{\tilde{i}} + d\Delta_t^{k,\tilde{i}}, \\ (d\tilde{Z}_t^{\tilde{i}} \text{ idiosyncratic Brownian risk})$ output tax $\tau_t a k_t^{\tilde{i}} dt$

- No aggregate risk dZ_t
- Government budget constraint:

$$\underbrace{(\mu_t^{\mathcal{MB}} - i_t^{\mathcal{MB}})}_{=:\check{\mu}_t^{\mathcal{MB}}} \mathcal{MB}_t + \mathcal{P}_t \mathcal{K}_t \underbrace{(\tau_t a - \mathcal{G})}_{=:s_t} = 0$$

Frictions

Let us build up model step by step adding one friction at a time:

- **1** Frictionless benchmark: $\tilde{\sigma} = 0$, $\mathfrak{T} \equiv 0$
 - only tax backing present
- **2** Financial friction (intertemporal)
 - $\tilde{\sigma} > 0$ and incomplete markets friction: $d\tilde{Z}_t^{\tilde{i}}$ -shocks uninsurable
 - money serves as a safe asset
- **3** Monetary friction (intratemporal)
 - transaction costs $\mathfrak{T}_t(\nu_t^{\tilde{i}})$ increasing in velocity $\nu_t^{\tilde{i}}$
 - reduced-form device for medium of exchange role
 - interpretation: transaction costs incurred in unmodeled supply chain

Outline

1 Money Model

Model Setup

Frictionless Benchmark

- Adding Financial Frictions
- Adding Monetary Frictions
- \blacksquare Separating Money $\mathcal M$ and Gov. Bonds $\mathcal B$

2 Monetary Policy

- "Pure" Monetary Policy vs. with Fiscal Implications
- Sims' Stepping on the Rake with Long-Maturity Bonds
- Quantitative Easing

3 Monetary Fiscal Connection

- Inflation–Fiscal Link
- Sargent-Wallace's Unpleasant Monetary Arithmetic

4 Price Level Determination

- Fiscal Backing and the Fiscal Theory of the Price Level
- Bubble Theories and (In-)Determinacy
- "Pure" Unit of Account Theory

Assets, Aggregate Resource Constraint, and Markets

Assets: capital and money

$$\begin{array}{l} \mathbf{q}_{t}^{K} \text{ capital price} \\ \mathbf{q}_{t}^{\mathcal{M}} \coloneqq \frac{\mathcal{M}\mathcal{B}_{t}}{\mathcal{P}_{t}K_{t}} \text{ value of money per unit of capital} \\ \mathbf{q}_{t} \coloneqq \mathbf{q}_{t}^{\mathcal{M}} = \frac{\mathcal{M}\mathcal{B}_{t}}{\mathcal{P}_{t}K_{t}} \text{ value of money per unit of capital} \\ \mathbf{q}_{t} \coloneqq \mathbf{q}_{t}^{K} + \mathbf{q}_{t}^{\mathcal{M}} = N_{t}/K_{t} \text{ wealth per unit of capital} \\ \mathbf{\vartheta}_{t} \coloneqq \frac{\mathcal{M}_{t}/\mathcal{P}_{t}}{q_{t}^{K}\kappa_{t}+\mathcal{M}_{t}/\mathcal{P}_{t}} = \frac{q_{t}^{\mathcal{M}}}{q_{t}^{K}+q_{t}^{\mathcal{M}}} \text{ share of nominal wealth} \\ \mathbf{P} \text{ ostulate Ito price processes} \\ \mathrm{d}q_{t}^{K}/q_{t}^{K} = \mu_{t}^{q,K}\mathrm{d}t, \ \mathrm{d}q_{t}^{\mathcal{M}}/q_{t}^{\mathcal{M}} = \mu_{t}^{q,\mathcal{M}}\mathrm{d}t, \ \mathrm{d}\vartheta_{t}/\vartheta_{t} = \mu_{t}^{\vartheta}\mathrm{d}t \\ \mathbf{S} \text{ SDF for each agent } \tilde{i} \colon \mathrm{d}\xi_{t}^{\tilde{i}}/\xi_{t}^{\tilde{i}} = -r_{t}dt \end{array}$$

Aggregate resource constraints:

• Output:
$$C_t + \iota_t K_t + \mathscr{G} K_t = aK_t$$

• Capital:
$$\int k_t^{\tilde{i}} d\Delta k_t^{k,i} d\tilde{i} = 0$$

Markets: Walrasian goods, money, and capital markets

Return Processes

Return on capital

$$dr_t^{K,\tilde{i}}(\iota) = \left(\frac{a(1-\tau_t)-\iota}{q_t^K} + \Phi(\iota) - \delta + \mu_t^{q,K}\right) \mathrm{d}t$$
$$= \left(\frac{a-\mathscr{G}-\iota}{q_t^K} + \frac{q_t^{\mathcal{M}}}{q_t^K}\check{\mu}_t^{\mathcal{M}} + \Phi(\iota) - \delta + \mu_t^{q,K}\right) \mathrm{d}t$$

second line uses government budget constraint

$$\check{\mu}_{t}^{\mathcal{M}}\mathcal{M}_{t} + \mathcal{P}_{t}\mathcal{K}_{t}(\tau_{t}a - \mathscr{G}) = 0 \Leftrightarrow \tau_{t}a - \mathscr{G} = -\check{\mu}_{t}^{\mathcal{M}}q_{t}^{\mathcal{M}}$$

Return on money

$$dr_t^{\mathcal{M}} = i_t^{\mathcal{M}} dt + \frac{d(1/\mathcal{P}_t)}{1/\mathcal{P}_t} = i_t^{\mathcal{M}} dt + \frac{d(q_t^{\mathcal{M}} \mathcal{K}_t/\mathcal{M}_t)}{q_t^{\mathcal{M}} \mathcal{K}_t/\mathcal{M}_t} = \left(i_t^{\mathcal{M}} + \mu_t^{q,\mathcal{M}} + \mu_t^{\mathcal{K}} - \mu_t^{\mathcal{M}}\right) dt = \left(\mu_t^{q,\mathcal{M}} + \mu_t^{\mathcal{K}} - \check{\mu}_t^{\mathcal{M}}\right) dt$$

Optimal Investment and Goods Market Clearing

Optimal investment: Tobin's Q condition

$$q_t^{K} = rac{1}{\Phi'(\iota_t^{\widetilde{i}})} = 1 + \phi \iota_t^{\widetilde{i}}$$

in particular, all agents choose same investment rate: $\iota_t^{\tilde{i}} = \iota_t$ Goods market clearing

$$\rho \mathbf{q}_t \mathbf{k}_t + \iota_t \mathbf{k}_t + \mathcal{G} \mathbf{k}_t = \mathbf{a} \mathbf{k}_t$$

Solve for q_t , use $q_t^{\mathcal{K}} = (1 - \vartheta_t)q_t$, plug into optimal investment condition:

$$(1-\vartheta_t)\frac{\mathbf{a}-\iota_t-\mathscr{G}}{\rho} = (1-\vartheta_t)q_t = 1+\phi\iota_t \qquad \Rightarrow \qquad \iota_t = \frac{(1-\vartheta_t)\mathbf{\check{a}}-\rho}{1-\vartheta_t+\phi\rho}$$

• where $\check{a} = a - \mathscr{G}$

Intermediate Conclusion: Equilibrium Asset Prices in Terms of ϑ_t

Plugging ι_t expression back into $q_t = (\check{a} - \iota_t)/\rho$:

$$q_t = rac{1+\phi \check{a}}{1-artheta_t+\phi
ho}$$

• q_t , q_t^K , $q_t^{\mathcal{M}}$, ι_t only depend on the nominal wealth share ϑ_t :

$$\begin{aligned} q_t &= \frac{1 + \phi \check{a}}{1 - \vartheta_t + \phi \rho} & \iota_t &= \frac{(1 - \vartheta_t)\check{a} - \rho}{1 - \vartheta_t + \phi \rho} \\ q_t^{\mathcal{K}} &= (1 - \vartheta_t) \frac{1 + \phi \check{a}}{1 - \vartheta_t + \phi \rho} & q_t^{\mathcal{M}} &= \vartheta_t \frac{1 + \phi \check{a}}{1 - \vartheta_t + \phi \rho} \end{aligned}$$

Hence, ϑ_t is the key variable in this model!

- in equilibrium, $\vartheta_t = \theta_t$ (asset market clearing)
- **s** so ϑ_t should be determined by portfolio choice

Characterizing ϑ_t : Portfolio Choice Conditions

Portfolio choice conditions

$$\frac{\mathbb{E}_t[dr_t^{\mathcal{MB}}]}{dt} = r_t = \frac{\mathbb{E}_t[dr_t^{\mathcal{K},\tilde{l}}]}{dt}$$

Substitute in return expressions

$$-\check{\mu}_{t}^{\mathcal{MB}} + \mu_{t}^{\mathcal{K}} + \mu_{t}^{q,\mathcal{MB}} = \frac{a - \iota_{t} - \mathscr{G} + q_{t}^{\mathcal{MB}}\check{\mu}_{t}^{\mathcal{MB}}}{q_{t}^{\mathcal{K}}} + \underline{\Phi}(\iota_{t}) - \delta + \mu_{t}^{q,\mathcal{K}}$$

Use

$$\begin{array}{l} \mathbf{a} - \iota_t - \mathscr{G} = \rho q_t & (\text{goods market clearing}) \\ \mathbf{a} q_t^K = (1 - \vartheta_t) q_t, \ q_t^{\mathcal{M}\mathcal{B}} = \vartheta_t q_t & (\text{def. of } \vartheta_t) \\ \mathbf{a} \mu_t^\vartheta = (1 - \vartheta_t) (\mu_t^{q,\mathcal{M}\mathcal{B}} - \mu_t^{q,K}) & (\text{ltô}) \\ \end{array} \\ \text{and solve for } \mu_t^\vartheta: \\ \mu_t^\vartheta = \rho + \check{\mu}_t^{\mathcal{M}\mathcal{B}} \end{array}$$

Characterizing ϑ_t : The Money Valuation Equation

By definition, $\mu_t^{\vartheta} = \mathbb{E}_t [d\vartheta_t] / \vartheta_t$, so last equation can be written as

$$\mathbb{E}_t[d\vartheta_t] = \left(\rho + \check{\mu}_t^{\mathcal{M}}\right)\vartheta_t dt$$

- this version is preferable because it remains valid for $\vartheta_t = 0$
- but note that our derivation has assumed $\vartheta_t > 0$ (otherwise dr_t^{MB} is not well-defined)
- This is the money valuation equation that characterizes portfolio demand for money
- For interpretation, integrate forward in time

(this would be a BSDE in a stochastic setting, i.e., a forward-looking choice condition, so we need to integrate forward in time)

$$\vartheta_t = \mathbb{E}_t \left[\int_t^\infty e^{-\rho(t'-t)} (-\check{\mu}_{t'}^{\mathcal{M}}) \vartheta_{t'} dt' \right] = \mathbb{E}_t \left[\int_t^\infty e^{-\rho(t'-t)} \frac{s_{t'}}{q_{t'}} dt' \right]$$

- portfolio demand for money arises from expectations of future primary surpluses (s_tK_t)
- these represent real payouts/cash flows made to holders of money

Frictionless Benchmark: Steady State Equilibria

- Let's assume a steady state equilibrium with constant ϑ (and hence q, q^K, q^{MB}, ι) (this is really a balanced growth path because K_t grows at constant rate g = Φ(ι) − δ)
 Imposing steady state implies:
 - by the money valuation equation $(\mu_t^\vartheta = 0)$

$$\check{\mu}^{\mathcal{M}} = -\rho$$

by the government budget constraint

$$s = -\check{\mu}^{\mathcal{M}\mathcal{B}}q^{\mathcal{M}\mathcal{B}} = \rho q^{\mathcal{M}\mathcal{B}} \Rightarrow q^{\mathcal{M}\mathcal{B}} = \frac{s}{\rho}$$

Some of the remaining equilibrium quantities are then:

$$\vartheta_t = \frac{s(1+\phi\rho)}{s+\rho(1+\phi\check{a})} \qquad q^{\kappa} = \frac{1+\phi(\check{a}-s)}{1+\phi\rho} \qquad \iota_t = \frac{\check{a}-s-\rho}{1+\phi\rho}$$

Remark: we need $0 < s < \check{a} + \frac{1}{\phi}$ for both assets to have positive value.

Some Observations from Frictionless Benchmark

1 The value of money depends on fiscal backing

- need positive primary surpluses (s > 0) for money to be valued
- higher *s* results in higher $q^{\mathcal{M}}$ and ϑ
- 2 The following are inversely related to the value of money
 - the value of capital assets (q^{κ})
 - the investment rate (ι)
 - the growth rate of the economy $(g = \Phi(\iota) \delta)$
- 3 The nominal interest rate paid on money does not matter for the real allocation
 - raising $i^{\mathcal{M}}$ while maintaining $\check{\mu}^{\mathcal{M}} = -\rho$ raises $\mu^{\mathcal{M}} = i^{\mathcal{M}} \rho$ one for one
 - this affects the inflation rate $(\pi := \mu^{\mathcal{P}} = \mu^{\mathcal{M}} g)$ but no real variables

Outline

1 Money Model

- Model Setup
- Frictionless Benchmark
- Adding Financial Frictions
- Adding Monetary Frictions
- \blacksquare Separating Money $\mathcal M$ and Gov. Bonds $\mathcal B$

2 Monetary Policy

- "Pure" Monetary Policy vs. with Fiscal Implications
- Sims' Stepping on the Rake with Long-Maturity Bonds
- Quantitative Easing

3 Monetary Fiscal Connection

- Inflation–Fiscal Link
- Sargent-Wallace's Unpleasant Monetary Arithmetic

4 Price Level Determination

- Fiscal Backing and the Fiscal Theory of the Price Level
- Bubble Theories and (In-)Determinacy
- "Pure" Unit of Account Theory

Assets, Aggregate Resource Constraint, and Markets

Assets: capital and money

$$\begin{array}{l} \mathbf{q}_{t}^{K} \text{ capital price} \\ \mathbf{q}_{t}^{\mathcal{M}} \coloneqq \frac{\mathcal{M}\mathcal{B}_{t}}{\mathcal{P}_{t}K_{t}} \text{ value of money per unit of capital} \\ \mathbf{q}_{t} \stackrel{\mathcal{M}}{=} \frac{\mathcal{M}\mathcal{B}_{t}}{\mathcal{P}_{t}K_{t}} \text{ value of money per unit of capital} \\ \mathbf{q}_{t} \coloneqq \mathbf{q}_{t}^{K} + \mathbf{q}_{t}^{\mathcal{M}} = N_{t}/K_{t} \text{ wealth per unit of capital} \\ \mathbf{\vartheta}_{t} \coloneqq \frac{\mathcal{M}_{t}/\mathcal{P}_{t}}{\mathbf{q}_{t}^{K}K_{t}+\mathcal{M}\mathcal{B}_{t}/\mathcal{P}_{t}} = \frac{\mathbf{q}_{t}^{\mathcal{M}}}{\mathbf{q}_{t}^{K}+\mathbf{q}_{t}^{\mathcal{M}}} \text{ share of nominal wealth} \\ \mathbf{P} \text{ ostulate Ito price processes} \\ \mathrm{d}\mathbf{q}_{t}^{K}/\mathbf{q}_{t}^{K} = \mu_{t}^{q,\mathrm{K}}\mathrm{d}t, \quad \mathrm{d}\mathbf{q}_{t}^{\mathcal{M}}/\mathbf{q}_{t}^{\mathcal{M}} = \mu_{t}^{q,\mathcal{M}}\mathrm{d}t, \quad \mathrm{d}\vartheta_{t}/\vartheta_{t} = \mu_{t}^{\vartheta}\mathrm{d}t \\ \mathbf{P} \text{ SDF for each agent } \tilde{i} \colon \mathrm{d}\xi_{t}^{\tilde{i}}/\xi_{t}^{\tilde{i}} = -r_{t}dt - \tilde{\zeta}_{t}\mathrm{d}\tilde{Z}_{t}^{\tilde{i}} \end{array}$$

Aggregate resource constraints:

• Output:
$$C_t + \iota_t K_t + \mathscr{G} K_t = aK_t$$

• Capital:
$$\int k_t^i d\Delta k_t^{k,i} d\tilde{i} = 0$$

Markets: Walrasian goods, money, and capital markets

Return Processes

Return on capital

$$dr_t^{K,\tilde{i}}(\iota) = \left(\frac{a(1-\tau_t)-\iota}{q_t^K} + \Phi(\iota) - \delta + \mu_t^{q,K}\right) dt + \tilde{\sigma} d\tilde{Z}_t^{\tilde{i}} \\ = \left(\frac{a-\mathscr{G}-\iota}{q_t^K} + \frac{q_t^{\mathcal{M}}}{q_t^K}\check{\mu}_t^{\mathcal{M}} + \Phi(\iota) - \delta + \mu_t^{q,K}\right) dt + \tilde{\sigma} d\tilde{Z}_t^{\tilde{i}}$$

Return on money

$$egin{aligned} dr_t^{\mathcal{MB}} &= i_t^{\mathcal{MB}} dt + rac{d(1/\mathcal{P}_t)}{1/\mathcal{P}_t} \ &= \left(\mu_t^{q,\mathcal{MB}} + \mu_t^{\mathcal{K}} - \check{\mu}_t^{\mathcal{MB}}
ight) dt \end{aligned}$$

Optimal Investment and Goods Market Clearing

Exactly as in previous model:

Optimal investment

$$q_t^K = rac{1}{\Phi'(\iota_t)} = 1 + \phi \iota_t$$

Combining with market clearing implies

$$\iota_t = \frac{(1 - \vartheta_t)\check{a} - \rho}{1 - \vartheta_t + \phi\rho}$$

Implied asset prices

$$q_t = \frac{1 + \phi \check{a}}{1 - \vartheta_t + \phi \rho} \qquad q_t^{\mathcal{K}} = (1 - \vartheta_t) \frac{1 + \phi \check{a}}{1 - \vartheta_t + \phi \rho} \qquad q_t^{\mathcal{M}} = \vartheta_t \frac{1 + \phi \check{a}}{1 - \vartheta_t + \phi \rho}$$

• Hence, the key variable to determine is the nominal wealth share ϑ_t

Characterizing ϑ_t : Portfolio Choice Conditions

Portfolio choice conditions

$$-\check{\mu}_{t}^{\mathcal{M}} + \Phi(\iota) - \delta + \mu_{t}^{q,\mathcal{M}} = \frac{\mathbb{E}_{t}[dr_{t}^{\mathcal{M}}]}{dt} = r_{t}$$

$$\frac{a - \mathscr{G} - \iota}{q_{t}^{\mathcal{K}}} + \frac{q_{t}^{\mathcal{M}}}{q_{t}^{\mathcal{K}}}\check{\mu}_{t}^{\mathcal{M}} + \Phi(\iota) - \delta + \mu_{t}^{q,\mathcal{K}} = \frac{\mathbb{E}_{t}[dr_{t}^{\mathcal{K}}]}{dt} = r_{t} + \tilde{\varsigma}_{t}\tilde{\sigma}$$

1 10-

New element: idiosyncratic risk premium $\tilde{\varsigma}_t \tilde{\sigma}$ on capital

- due to log utility $\tilde{\varsigma}_t = \tilde{\sigma}_t^n = (1 \theta_t)\tilde{\sigma}$
- by asset market clearing then $\tilde{\varsigma}_t = (1 \vartheta_t)\tilde{\sigma}$
- After same steps as before, we obtain

$$\mu_t^{\vartheta} = \rho + \check{\mu}_t^{\mathcal{M}} - (1 - \vartheta_t)^2 \tilde{\sigma}^2$$

The Money Valuation Equation with Idiosyncratic Risk

The money valuation equation is now

$$\mathbb{E}_t[d\vartheta_t] = \left(\rho + \check{\mu}_t^{\mathcal{MB}} - (1 - \vartheta_t)^2 \tilde{\sigma}^2\right) \vartheta_t dt$$

In integral form

$$\vartheta_t = \mathbb{E}_t \left[\int_t^\infty e^{-\rho(t'-t)} \left(-\check{\mu}_{t'}^{\mathcal{M}} + (1-\vartheta_{t'})^2 \tilde{\sigma}^2 \right) \vartheta_{t'} dt' \right]$$

- Money may be valued for two reasons:
 - because of cash flows from fiscal backing $(-\check{\mu}_t^{\mathcal{MB}})$
 - because it is a safe asset that facilitates idiosyncratic risk sharing $((1 \vartheta_t)^2 \tilde{\sigma}^2)$ (we will explore the safe asset features in more detail in the next lecture)

Idiosyncratic Risk Model: Steady State Equilibria

• Possible values for $\check{\mu}^{\mathcal{MB}}$ consistent with $\mu_t^{\vartheta} = 0$

$$-\rho \leq \check{\mu}^{\mathcal{M}} < -\rho + \tilde{\sigma}^2$$

For any such value, there are two possible steady-state equilibria:

	Non-Monetary	Monetary (Store of Value)
θ	$\vartheta = 0$	$artheta=rac{ ilde{\sigma}-\sqrt{ ho+ec{\mu}^{\mathcal{M}\!\mathcal{B}}}}{ ilde{\sigma}}$
$q^{\mathcal{M}\!\mathcal{B}}$	$q^{\mathcal{M}}=0$	$q^{\mathcal{M}\!\mathcal{B}} = rac{(ilde{\sigma} - \sqrt{ ho + ec{\mu}^{\mathcal{M}\!\mathcal{B}}})(1 + \phi ec{a})}{\sqrt{ ho + ec{\mu}^{\mathcal{M}\!\mathcal{B}}} + \phi ho ilde{\sigma}}$
q^{κ}	$q^{\mathcal{K}} = rac{1+\phi \check{a}}{1+\phi ho}$	$q^{\mathcal{K}} = rac{\sqrt{ ho+ec\mu^{\mathcal{MB}}}(1+\phieca)}{\sqrt{ ho+ec\mu^{\mathcal{MB}}}+\phi hoeca}}$
ι	$\iota = rac{\check{a} - ho}{1 + \phi ho}$	$\iota = \frac{\check{a}\sqrt{\rho + \check{\mu}^{\mathcal{M}}} - \tilde{\sigma}\rho}{\sqrt{\rho + \check{\mu}^{\mathcal{M}}} + \phi\rho\tilde{\sigma}}$
5	<i>s</i> = 0	$s=-\check{\mu}^{\mathcal{MB}}rac{(\check{\sigma}-\sqrt{ ho+\check{\mu}^{\mathcal{MB}}})(1+\phi\check{a})}{\sqrt{ ho+\check{\mu}^{\mathcal{MB}}+\phi ho\check{\sigma}}}$

Bubbles and Seigniorage

If $\tilde{\sigma}^2 > \rho$, $\check{\mu}^{\mathcal{NB}} = 0$ is a possible choice in previous solution

- then, in the monetary steady state, money is still valued
- ... but there is no fiscal backing $(s = -\check{\mu}^{\mathcal{M}\mathcal{B}}q^{\mathcal{M}\mathcal{B}} = 0)$
- money is a (rational) *bubble*: intrinsic value is zero but market value is positive
- \blacksquare We can push this idea further and even pick $\check{\mu}^{\mathcal{MB}}>0$
 - feasible so long as $\check{\mu}^{\mathcal{M}} < \tilde{\sigma}^2 \rho$
 - then the government runs permanent primary deficits, s < 0
- Permanent deficits are possible because the government can generate seigniorage by "mining the bubble"
 - print new money that dilutes the claims of existing money holders to the aggregate bubble
 - bubble mining here acts as a tax on risk sharing (lowers ϑ_t , raises risk exposures)

Observations from Frictionless Benchmark Revisited

1 The value of money depends on fiscal backing and idiosyncratic risk

- do not necessarily need positive primary surpluses (s > 0) for money to be valued
- higher s or higher $\tilde{\sigma}$ result in higher $q^{\mathcal{M}}$ and ϑ
- 2 The following are inversely related to the value of money
 - the value of capital assets (q^K)
 - the investment rate (ι)
 - the growth rate of the economy $(g = \Phi(\iota) \delta)$

these observations remain correct (only depend on goods market clearing)

3 The nominal interest rate paid on money does not matter for the real allocation

- raising $i^{\mathcal{M}}$ while maintaining $\check{\mu}^{\mathcal{M}} = -\rho$ raises $\mu^{\mathcal{M}} = i^{\mathcal{M}} \rho$ one for one
- this affects the inflation rate $(\pi := \mu^{\mathcal{P}} = \mu^{\mathcal{M}} g)$ but no real variables

these observations remain also correct

Outline

1 Money Model

- Model Setup
- Frictionless Benchmark
- Adding Financial Frictions
- Adding Monetary Frictions
- \blacksquare Separating Money $\mathcal M$ and Gov. Bonds $\mathcal B$

2 Monetary Policy

- "Pure" Monetary Policy vs. with Fiscal Implications
- Sims' Stepping on the Rake with Long-Maturity Bonds
- Quantitative Easing

3 Monetary Fiscal Connection

- Inflation–Fiscal Link
- Sargent-Wallace's Unpleasant Monetary Arithmetic

4 Price Level Determination

- Fiscal Backing and the Fiscal Theory of the Price Level
- Bubble Theories and (In-)Determinacy
- "Pure" Unit of Account Theory

Adding Monetary Friction: Transaction Costs

Recall: output produced by \tilde{i} net of investment and transaction costs

$$y_t^{\tilde{i}} dt = (ak_t^{\tilde{i}} - \iota_t^{\tilde{i}} k_t^{\tilde{i}} - \mathfrak{T}_t(\nu_t^{\tilde{i}}) k_t^{\tilde{i}}) dt$$

where $m_t^{\tilde{i}}$ denotes the money holdings of individual \tilde{i} transaction costs are given by

$$\mathfrak{T}_t(\nu) = \frac{a}{(\mathfrak{z}-1)\overline{\nu}} \left[\left(\frac{\nu}{\overline{\nu}}\right)^{\mathfrak{z}-1} - \left(\frac{\nu_t^{\mathsf{eq}}}{\overline{\nu}}\right)^{\mathfrak{z}-1} \right]$$

• ν_t^{eq} is velocity of everyone else in equilibrium • Limit case $\mathfrak{z} \to \infty$: cash-in-advance constraint

$$\nu_t^{\tilde{i}} \leq \bar{\nu} \Leftrightarrow \mathcal{P}_t \mathsf{ak}_t^i \leq \bar{\nu} m_t^{\tilde{i}}$$

Return Processes

Return on capital

$$dr_t^{K,\tilde{i}}(\iota,\nu) = \left(\frac{a(1-\tau_t)-\iota-\mathfrak{T}_t(\nu)}{q_t^K} + \Phi(\iota)-\delta + \mu_t^{q,K}\right) \mathrm{d}t + \tilde{\sigma}d\tilde{Z}_t^{\tilde{i}}$$
$$= \left(\frac{a-\mathscr{G}-\iota-\mathfrak{T}_t(\nu)}{q_t^K} + \frac{q_t^M}{q_t^K}\check{\mu}_t^M + \Phi(\iota)-\delta + \mu_t^{q,K}\right) \mathrm{d}t + \tilde{\sigma}d\tilde{Z}_t^{\tilde{i}}$$

Return on money

$$egin{aligned} dr_t^{\mathcal{MB}} &= i_t^{\mathcal{MB}} dt + rac{d(1/\mathcal{P}_t)}{1/\mathcal{P}_t} \ &= \left(\mu_t^{q,\mathcal{MB}} + \mu_t^{\mathcal{K}} - \check{\mu}_t^{\mathcal{MB}}
ight) dt \end{aligned}$$

Optimal Investment and Goods Market Clearing

Exactly as in previous model:

Optimal investment

$$u_t = \frac{(1 - \vartheta_t)\check{a} - \rho}{1 - \vartheta_t + \phi\rho}$$

Implied asset prices

$$q_t = rac{1+\phi\check{a}}{1-artheta_t+\phi
ho} \hspace{0.5cm} q_t^{\mathcal{K}} = (1-artheta_t)rac{1+\phi\check{a}}{1-artheta_t+\phi
ho} \hspace{0.5cm} q_t^{\mathcal{MB}} = artheta_trac{1+\phi\check{a}}{1-artheta_t+\phi
ho}$$

Portfolio Choice

Note: portfolio choice is nonstandard because θ_t enters net worth return nonlinearly via velocity. Therefore, we solve this explicitly using the stochastic maximum principle.

$$H_t = e^{-\rho t} \log c_t - \xi_t c_t + \xi_t n_t \left((1 - \theta_t) \frac{\mathbb{E}_t [dr_t^{\mathcal{K}}(\iota_t, \nu_t)]}{dt} + \theta_t \frac{\mathbb{E}_t [dr_t^{\mathcal{M}}]}{dt} \right) - \tilde{\varsigma_t} \xi_t n_t (1 - \theta_t) \tilde{\sigma}$$

Maximize H_t with respect to θ_t , ν_t subject to the constraint

$$heta_t oldsymbol{
u}_t = (1- heta_t) rac{a}{q_t^K}$$

Denoting the Lagrange multiplier by $\lambda_t^{\mathcal{MB}} \xi_t n_t$, the first-order conditions are:

$$\begin{aligned} \theta_t : & \frac{\mathbb{E}_t [dr_t^K(\iota_t, \nu_t)]}{dt} - \frac{\mathbb{E}_t [dr_t^{\mathcal{M}}]}{dt} = \tilde{\varsigma}_t \tilde{\sigma} + \lambda_t^{\mathcal{M}} \left(\nu_t + \frac{a}{q_t^K}\right) \\ \nu_t : & (1 - \theta_t) \frac{\partial \mathbb{E} [dr_t^K(\iota_t, \nu_t)]/dt}{\partial \nu_t} + \lambda_t^{\mathcal{M}} \theta_t = 0 \end{aligned}$$

θ-FOC and Money Valuation Equation

$$\frac{\mathbb{E}_{t}[dr_{t}^{K}(\iota_{t},\nu_{t})]}{dt} = \underbrace{\overbrace{a-\mathscr{G}-\iota_{t}-\mathfrak{T}_{t}(\nu_{t})}^{=\rho/(1-\vartheta_{t})}}_{\frac{q_{t}^{K}}{q_{t}^{K}}} + \underbrace{\overbrace{q_{t}^{M}}^{=\vartheta_{t}/(1-\vartheta_{t})}}_{q_{t}^{K}} + \Phi(\iota_{t}) - \delta + \mu_{t}^{q,K}$$

$$\frac{\mathbb{E}_{t}[dr_{t}^{\mathcal{M}}]}{dt} = -\check{\mu}_{t}^{\mathcal{M}} + \Phi(\iota_{t}) - \delta + \mu_{t}^{q,\mathcal{M}}$$

Take the difference:

$$\frac{\mathbb{E}_t[dr_t^{\mathcal{K}}(\iota_t,\nu_t)]}{dt} - \frac{\mathbb{E}_t[dr_t^{\mathcal{MB}}]}{dt} = \frac{\rho}{1-\vartheta_t} + \frac{\check{\mu}_t^{\mathcal{MB}}}{1-\vartheta_t} - \frac{\mu_t^\vartheta}{1-\vartheta_t}$$

Plug into FOC:

$$\frac{\rho}{1-\vartheta_t} + \frac{\check{\mu}_t^{\mathcal{M}}}{1-\vartheta_t} - \frac{\mu_t^{\vartheta}}{1-\vartheta_t} = \tilde{\varsigma}_t \tilde{\sigma} + \lambda_t^{\mathcal{M}} \left(\nu_t + \frac{\mathbf{a}}{q_t^{\mathcal{K}}}\right) = (1-\vartheta_t)\tilde{\sigma}^2 + \frac{\lambda_t^{\mathcal{M}}\nu_t}{1-\vartheta_t}$$

Define $\Delta i_t := i_t - i_t^{\mathcal{MB}} = \lambda_t^{\mathcal{MB}} \nu_t$. Intuitively, Δi_t represents a liquidity premium - the spread between a frictionless nominal interest rate and the return on money. Solve for $\mathbb{E}_t[d\vartheta_t]$:

(*i*_t: shadow nominal rate *i*_t on nominal asset without transaction services)

$$\mathbb{E}_t[d\vartheta_t] = \left(\rho + \check{\mu}_t^{\mathcal{M}} - (1 - \vartheta_t)^2 \tilde{\sigma}^2 - \Delta i_t\right) \vartheta_t dt$$

ν -FOC and Quantity Equation

• From capital return and functional form $\mathfrak{T}_t(\nu) = \frac{a}{(\mathfrak{z}-1)\overline{\nu}} \left[\left(\frac{\nu}{\overline{\nu}}\right)^{\mathfrak{z}-1} - \left(\frac{\nu_t^{eq}}{\overline{\nu}}\right)^{\mathfrak{z}-1} \right]$,

$$\frac{\partial \mathbb{E}[dr_t^K(\iota_t,\nu_t)]/dt}{\partial \nu_t} = -\frac{a}{q_t^K} \frac{1}{\bar{\nu}^2} \left(\frac{\nu_t}{\bar{\nu}}\right)^{3-2} = -\frac{\vartheta_t}{1-\vartheta_t} \frac{1}{\bar{\nu}} \left(\frac{\nu_t}{\bar{\nu}}\right)^{3-1}$$

Plug this expression (and $\theta_t = \vartheta_t$) into ν_t -FOC:

$$\lambda_t^{\mathcal{M}} = \frac{1}{\bar{\nu}} \left(\frac{\nu_t}{\bar{\nu}} \right)^{\mathfrak{z}-1} \Rightarrow \boxed{\Delta i_t = \lambda_t^{\mathcal{M}} \nu_t = \left(\frac{\nu_t}{\bar{\nu}} \right)^{\mathfrak{z}}}$$

Solving for ν_t , plugging into definition of ν_t , and aggregating yields the quantity equation

$$\mathcal{P}_t Y_t = \underbrace{\left(\Delta i_t\right)^{\frac{1}{3}} \bar{\nu}}_{\nu_t} \mathcal{M}_t$$

• Remark: in the CIA limit , $\mathfrak{z} \to \infty$, two possible cases

$$\begin{cases} \nu_t < \bar{\nu} & \Delta i_t = 0\\ \nu_t = \bar{\nu} & \Delta i_t \ge 0 \end{cases}$$

Steady State Equilibrium

• Assume $\check{\mu}_t^{\mathcal{MB}} = \check{\mu}^{\mathcal{MB}}$ is constant and consider steady state $(\mu_t^{\vartheta} = 0)$ 1 Money Valuation Equation

$$ho + \check{\mu}^{\mathcal{M}} = (1 - \vartheta)^2 \tilde{\sigma}^2 + \Delta i$$

Quantity Equation

$$\Delta i = \left(\frac{\nu}{\bar{\nu}}\right)^{\mathfrak{z}} = \left(\frac{1}{\bar{\nu}}\frac{1-\vartheta+\phi\rho}{\vartheta}\frac{\mathbf{a}}{1+\phi\check{\mathbf{a}}}\right)^{\mathfrak{z}}$$

Remark: last equality follows from equations derived previously

$$u_t = rac{1 - artheta_t}{artheta_t} rac{a}{q_t^K}, \qquad q_t^K = (1 - artheta_t) rac{1 + \phi \check{a}}{1 - artheta_t + \phi
ho}$$

Combining the two equations yields nonlinear equation for steady-state ϑ No closed-form solution except in special cases, e.g.

- **no transaction costs** $(\bar{\nu} \to \infty)$ (as analyzed previously)
- cash-in-advance limit $(\mathfrak{z} \to \infty)$

(will consider this one next)
Special Case: Cash in advance constraint $(\mathfrak{z} \to \infty)$

Two cases:

1 $\Delta i = 0, \nu < \overline{\nu}$: valuation equation (store of value role) determines ϑ ,

$$ho+\check{\mu}^{\mathcal{MB}}=(1-artheta)^2 ilde{\sigma}^2$$

2 $\Delta i > 0, \nu = \overline{\nu}$: quantity equation (medium of exchange role) determines ϑ ,

$$rac{1}{ar{
u}}rac{1-artheta+\phi
ho}{artheta}rac{m{a}}{1+\phim{a}}=1$$

	Medium of Exchange	Store of Value
θ	$artheta = rac{(1+\phi ho) a}{a+(1+\phiec a) ar u}$	$artheta = rac{ ilde{\sigma} - \sqrt{ ho + ar{\mu}^{\mathcal{M}}}}{ ilde{\sigma}}$
Δi	$\Delta i = \rho + \check{\mu}^{\mathcal{M}\mathcal{B}} - \left(\frac{\bar{\nu} + \phi(\check{a}\bar{\nu} - a\rho)}{a + (1 + \phi\check{a})\bar{\nu}}\right)^2 \tilde{\sigma}^2$	$\Delta i = 0$
$q^{\mathcal{M}\!\mathcal{B}}$	$q^{\mathcal{MB}}=rac{a}{ar{ u}}$	$q^{\mathcal{M}\!\mathcal{B}} = rac{(ilde{\sigma} - \sqrt{ ho + ec{\mu}^{\mathcal{M}\!\mathcal{B}}})(1 + \phi ec{s})}{\sqrt{ ho + ec{\mu}^{\mathcal{M}\!\mathcal{B}}} + \phi ec{\sigma} ho}$
q^K	$q^{\mathcal{K}} = rac{1+\phi(\check{a}-a ho/ar{ u})}{1+\phi ho}$	$q^{\mathcal{K}} = rac{\sqrt{ ho+ec{\mu}^{\mathcal{M}\mathcal{B}}}(1+\phiec{s})}{\sqrt{ ho+ec{\mu}^{\mathcal{M}\mathcal{B}}}+\phi ilde{\sigma} ho}$
ι	$\iota = rac{\check{a} - ho(1 + a/ar{ u})}{1 + \phi ho}$	$\iota = \frac{\check{a}\sqrt{\rho + \check{\mu}^{\mathcal{M}\mathcal{B}}} - \tilde{\sigma}\rho}{\sqrt{\rho + \check{\mu}^{\mathcal{M}\mathcal{B}}} + \phi\tilde{\sigma}\rho}$

Comparative Statics w.r.t. Financial Friction ($\tilde{\sigma}$)

Comparative Statics w.r.t. Monetary Friction $(\bar{\nu})$

Comparative Statics w.r.t. Fiscal Backing $(s/q^{\mathcal{MB}} = -\check{\mu}^{\mathcal{MB}})$

Comparative Statics w.r.t. Fiscal Backing – Smaller $\bar{\nu}$

Determinants of Value of Money, Sources of Seigniorage

Consider again the integral form of the money valuation equation

$$\vartheta_t = \mathbb{E}_t \left[\int_t^\infty e^{-\rho(t'-t)} \left(-\check{\mu}_{t'}^{\mathcal{M}} + (1-\vartheta_{t'})^2 \tilde{\sigma}^2 + \Delta i_{t'} \right) \vartheta_{t'} dt' \right]$$

- This emphasizes three sources of the value of money:
 - 1 cash flows from fiscal backing
 - 2 risk sharing benefits from money as a safe asset (store of value)
 - 3 transaction benefits from money as a medium of exchange
- Again, fiscal backing may actually be negative ($\check{\mu}^{\mathcal{MB}} > 0$)
 - then money may still be valued if other benefits are sufficiently strong
 - the government then extracts seigniorage revenue from issuing more money
 - money is then a (rational) bubble

Money and Growth: Tobin Effect

- Observation from all three variants of the model: investment & growth depend negatively on money portfolio demand (v)
- Intuition: money crowds out real investment
 - consumption demand depends on total wealth $(C_t = \rho(q^K + q^{MB})K_t)$
 - but money is unproductive: higher $q^{\mathcal{MB}}$ increases wealth without raising output $(Y_t = aK_t)$
 - since output is fixed, investment must fall to meet increased consumption demand, reducing future capital and thus future output
- Formalizes argument by Tobin (1965) that portfolio choice between monetary and capital assets is a key determinant of real investment
- Aside: Tobin effect distinguishes outside money from bank-created inside money (compare Merkel, 2020)

1 Money Model

- Model Setup
- Frictionless Benchmark
- Adding Financial Frictions
- Adding Monetary Frictions
- \blacksquare Separating Money $\mathcal M$ and Gov. Bonds $\mathcal B$

2 Monetary Policy

- "Pure" Monetary Policy vs. with Fiscal Implications
- Sims' Stepping on the Rake with Long-Maturity Bonds
- Quantitative Easing

3 Monetary Fiscal Connection

- Inflation–Fiscal Link
- Sargent-Wallace's Unpleasant Monetary Arithmetic

- Fiscal Backing and the Fiscal Theory of the Price Level
- Bubble Theories and (In-)Determinacy
- "Pure" Unit of Account Theory

Money and Nominal Government Debt

- Previous model: money is the only government liability
- More realistic: government issues money M_t and nominal bonds B_t
 - both serve as a store of value
 - but only *M_t*-component of govt.
 liabilities is medium of exchange
- Model analysis is the same as in

the baseline model, except that we need to reinterpret some variables:

• we need to reinterpret some variables:

•
$$q_t^{\mathcal{MB}} o q_t^{\mathcal{M}} + q_t^{\mathcal{B}}$$
 (value of all government liabilities)

•
$$\vartheta_t \to \frac{q_t^{\mathcal{M}} + q_t^{\mathcal{B}}}{q_t^{\mathcal{M}} + q_t^{\mathcal{B}} + q_t^{\mathcal{K}}}$$
 (nominal wealth share)

• $\check{\mu}_t^{\mathcal{M}} \rightarrow \frac{\mathcal{M}_t \check{\mu}_t^{\mathcal{M}} + \mathcal{B}_t \check{\mu}_t^{\mathcal{H}}}{\mathcal{M}_t + \mathcal{B}_t}$ (average dilution rate of nom. liabilities)

we need to allow for time-varying transaction benefits:

 $\bar{\nu}_t$ [money only model] = $\left(\frac{\mathcal{M}_t}{\mathcal{B}_t + \mathcal{M}_t}\right)^{1-1/3} \bar{\nu}$ [bond and money model] we need to derive new valuation equations:

 $\mu_t^{\vartheta} = \rho + \check{\mu}_t^{\mathcal{M}} - (1 - \vartheta_t)^2 \tilde{\sigma}^2 - \vartheta_t^{\dot{\mathcal{M}}} \Delta i_t \text{ (Govt. Liability Valuation Equation)}$ $\frac{\mathcal{B}_0 + \mathcal{M}_0}{\mathcal{P}_0} = \mathbb{E}_0 [\int_0^T e^{-r^f t} s_t \mathcal{K}_t \mathrm{d}t] + \mathbb{E}_0 [\int_0^T e^{-r^f t} \Delta i_t \frac{\mathcal{M}_t}{\mathcal{P}_t} \mathrm{d}t] + \mathbb{E}_0 [e^{-r^f T} \frac{\mathcal{B}_T + \mathcal{M}_T}{\mathcal{P}_T}] \text{ (FTPL)}$

Derivation for Govt. Liab. Valuation Equation and FTPL

Long-Term Government Bonds

- We can further distinguish money and bonds by lengthening bond duration
- In previous extension, bonds have infinitesimal duration ⇒ nominal bond price = 1
- \blacksquare With long-duration bonds, the nominal bond price can differ from 1
- Turns out to not matter a lot: the maturity composition of government bonds is irrelevant for
 - the real allocation
 - the equilibrium path of ϑ_t
 - ... but it does matter for nominal quantities, the price level, and inflation
- Modigliani-Miller intuition: the underlying "assets" backing bonds (taxes and safe asset services) are independent of maturity structure, hence so should be the total bond value

1 Money Model

- Model Setup
- Frictionless Benchmark
- Adding Financial Frictions
- Adding Monetary Frictions
- \blacksquare Separating Money $\mathcal M$ and Gov. Bonds $\mathcal B$

2 Monetary Policy

"Pure" Monetary Policy vs. with Fiscal Implications

- Sims' Stepping on the Rake with Long-Maturity Bonds
- Quantitative Easing

3 Monetary Fiscal Connection

- Inflation–Fiscal Link
- Sargent-Wallace's Unpleasant Monetary Arithmetic

- Fiscal Backing and the Fiscal Theory of the Price Level
- Bubble Theories and (In-)Determinacy
- "Pure" Unit of Account Theory

Monetary Policy

1 "Pure" Monetary/Interest Rate Policy $i_t^{\mathcal{B}}$

(no "fiscal implications", $\check{\mu}_t^{\mathcal{MB}}$ remains unchanged)

i-policy (Neo-Fisherian)

unexpected permanent increase in $i_t^{\mathcal{B}}$ and $i_t^{\mathcal{M}}$ without a change in Δi_t at t = 0 \Rightarrow at t = 0: ϑ_0 and \mathcal{P}_0 unchanged, $\check{\mu}_t^{\mathcal{M}}$ constant, i.e. $\mu_t^{\mathcal{M}}$ increases

 \Rightarrow at t > 0: increase in inflation (one-for-one), super-neutrality of money (growth)

■ △*i*-policy (Monetarism)

unexpected permanent increase in Δi_t and no change in $i_t^{\mathcal{M}}$, which is defined as $\frac{\mathcal{M}_t i_t^{\mathcal{M}} + \mathcal{B}_t i_t^{\mathcal{B}}}{\mathcal{M}_t + \mathcal{B}_t}$ in the case with separated money and bonds \Rightarrow at t = 0: ϑ jumps to a new permanently higher level, \mathcal{P}_0 drops \Rightarrow at t > 0: $\mu_t^{\mathcal{M}}$ is constant, $\pi = i_t^{\mathcal{M}} - g$ rises due to Tobin effect

2 "Non-pure" Interest Rate Policy with Fiscal Reaction (with "fiscal implications", $\check{\mu}_t^{\mathcal{MB}}$ changes)

i-policy

 \Rightarrow Fiscal policy adjusts taxes to keep μ_t^{MB} constant, then

Neo-Fisherian policy $\check{\mu}_t^{\mathcal{M}}$ has directionally same effect as monetary tightening (increase in taxes in order to compensate for lost seigniorage income)

Monetary Policy Implementation

Interest on Reserves:

- Adjust $i_t^{\mathcal{M}}$, keep $\frac{\mathcal{M}}{\mathcal{M}+\mathcal{B}}$ constant
- Implement Neo-Fisherian policy

• Open Market Operation:

- Keep $i_t^{\mathcal{M}}$ constant, adjust $\frac{\mathcal{M}}{\mathcal{B}+\mathcal{M}}$
- Implement Monetarist policy

(mixed with some Neo-Fisherian elements since $i^{\mathcal{M}}$ and not $i^{\mathcal{M}}$ is kept fixed)

1 Money Model

- Model Setup
- Frictionless Benchmark
- Adding Financial Frictions
- Adding Monetary Frictions
- \blacksquare Separating Money $\mathcal M$ and Gov. Bonds $\mathcal B$

2 Monetary Policy

- "Pure" Monetary Policy vs. with Fiscal Implications
- Sims' Stepping on the Rake with Long-Maturity Bonds
- Quantitative Easing

3 Monetary Fiscal Connection

- Inflation–Fiscal Link
- Sargent-Wallace's Unpleasant Monetary Arithmetic

- Fiscal Backing and the Fiscal Theory of the Price Level
- Bubble Theories and (In-)Determinacy
- "Pure" Unit of Account Theory

Introducing Long-Term Government Bonds

- Long-term bond
 - Yields fixed coupon rate \underline{i} on face value $F^{(\underline{i},m)}$ with maturity m
 - Matures at random time with arrival rate 1/m
 - Nominal price of the bond $P_t^{\mathcal{B}(\underline{i},m)}$
 - Nominal value of all bonds outstanding of a certain maturity: B^(m)_t = P^{B(i,m)}_tF^(i,m)
 - Nominal value of all bonds $\mathcal{B}_t = \sum_m \mathcal{B}_t^{(m)}$
- Special bonds
 - B_t⁽⁰⁾, note P_t^{B(0)} = 1 (price is independent of i_t since coupon is floating rate)
 B_t^(∞): Consol bond

Capital

Intangible

Capital

Human

Capital

Proposition

Maturity composition of $\mathcal{B}^{(m)}$ is irrelevant for real allocation and equilibrium path of ϑ_t ... but it matters for nominal quantities, the price level and inflation.

Modigliani-Miller intuition (in one sector model) (as s-backing is unchanged)

Nominal Gov liabilities

B + M

Outside Money

M/P Reserve:

Gov bonds

 \mathcal{B}/\mathcal{P}

Maturitia

Sims' Stepping on the Rake: "Bond Reevaluation Effect"

Unexpected permanent increase in i_t⁽⁰⁾ at t = 0 for all t > 0
⇒ nominal value B_t^(m>0) of any long-term bond declines
"Pure i-MoPo": keep μ^{MB} constant, i.e., "debt growth" increases, θ_t is constant and so is q_t^B (aside s_t/q_t^B also stays constant)
At t = 0 on impact: as all B₀^(m>0) decline ⇒ P₀ has to jump down
For t > 0: inflation π_t is higher like in Neo-Fisherian setting (with price stickiness like dotted curve)

In sum, "Stepping on the Rake" only changes inflation (price drop) at t = 0.
 ... only with price stickiness (price drop down is smoothed out).

1 Money Model

- Model Setup
- Frictionless Benchmark
- Adding Financial Frictions
- Adding Monetary Frictions
- \blacksquare Separating Money $\mathcal M$ and Gov. Bonds $\mathcal B$

2 Monetary Policy

- "Pure" Monetary Policy vs. with Fiscal Implications
- Sims' Stepping on the Rake with Long-Maturity Bonds
- Quantitative Easing

3 Monetary Fiscal Connection

- Inflation–Fiscal Link
- Sargent-Wallace's Unpleasant Monetary Arithmetic

- Fiscal Backing and the Fiscal Theory of the Price Level
- Bubble Theories and (In-)Determinacy
- "Pure" Unit of Account Theory

Quantitative Easing (QE)

Assume $\mu_t^{\mathcal{M}} = \mu_t^{\mathcal{B}}$ for all t

• At t = 0 QE in form of an unexpected swap of $\mathcal{B}^{(0)}$ -bonds (T-Bill) for money \mathcal{M}

T-Bill QE Proposition

T-Bill QE leads to positive price level jump.

Suppose \mathcal{P}_t reacts less, so that real balances $\frac{\mathcal{M}_t}{\mathcal{P}_t}$ expand

- \Rightarrow Relaxes CIA constraint and
- \Rightarrow permanently lowers Δi (if CIA was binding beforehand)
- \Rightarrow lowers "money seigniorage"
- \Rightarrow upward jump in the price level (inflation) by

$$\frac{\mathcal{B}_t + \mathcal{M}_t}{\mathcal{P}_t} = \mathbb{E}_t \int_t^T \frac{\xi_s}{\xi_t} s_s \mathcal{K}_s \mathrm{d}s + \mathbb{E}_t \int_t^T \frac{\xi_s}{\xi_t} \Delta i_s \frac{\mathcal{M}_s}{\mathcal{P}_s} \mathrm{d}s + \mathbb{E}_t \frac{\xi_T}{\xi_t} \frac{\mathcal{B}_T + \mathcal{M}_T}{\mathcal{P}_T}$$

The quantity equation (with fixed velocity) $\frac{M_t}{P_t} = \frac{C_t}{\nu}$ would also lead to upward jump of the price level.

1 Money Mode

- Model Setup
- Frictionless Benchmark
- Adding Financial Frictions
- Adding Monetary Frictions
- \blacksquare Separating Money $\mathcal M$ and Gov. Bonds $\mathcal B$

2 Monetary Policy

- "Pure" Monetary Policy vs. with Fiscal Implications
- Sims' Stepping on the Rake with Long-Maturity Bonds
- Quantitative Easing

3 Monetary Fiscal Connection

Inflation–Fiscal Link

Sargent-Wallace's Unpleasant Monetary Arithmetic

- Fiscal Backing and the Fiscal Theory of the Price Level
- Bubble Theories and (In-)Determinacy
- "Pure" Unit of Account Theory

Inflation–Fiscal Link

- Friedman (1961): "Inflation is always and everywhere a monetary phenomenon"
- Sims (1994): "In a fiat-money economy, inflation is a fiscal phenomenon, even more fundamentally than it is a monetary phenomenon".

Source: FRED, MeasuringWorth.com, Mitchell (1908)

Remark: Two Inflation-Fiscal Connection

FTPL Channel

Issue additional bonds to finance new economic stimulus

+ don't change future primary surpluses $s_t K_t$

 \Rightarrow dilutes value of existing bonds (as # of bonds is higher)

 \Rightarrow Inflation

Short-run Aggregate Demand Channel

Issue additional bonds to finance new economic stimulus

+ Commit to increase $s_t K_t$, so that bond value is not diluted (\Rightarrow FTPL Channel is switched off)

(extra bonds are financed by extra future $s_t K_t$)

If economic model is:

- Ricardian \Rightarrow stimulus is neutralized by future taxes
- $\blacksquare \text{ Non-Ricardian } \Rightarrow \text{stimulus can boost demand/output}$

(if there is a negative output gap e.g. in NK models)

Fiscal and Monetary Interaction

Monetary dominance

Monetary tightening leads fiscal authority to reduce fiscal deficit

Fiscal dominance

- Interest rate increase does not reduce primary fiscal deficit
- ... only lead to higher inflation

Game of chicken

See YouTube video 4, minute 4:15

1 Money Mode

- Model Setup
- Frictionless Benchmark
- Adding Financial Frictions
- Adding Monetary Frictions
- \blacksquare Separating Money $\mathcal M$ and Gov. Bonds $\mathcal B$

2 Monetary Policy

- "Pure" Monetary Policy vs. with Fiscal Implications
- Sims' Stepping on the Rake with Long-Maturity Bonds
- Quantitative Easing

3 Monetary Fiscal Connection

- Inflation–Fiscal Link
- Sargent-Wallace's Unpleasant Monetary Arithmetic

- Fiscal Backing and the Fiscal Theory of the Price Level
- Bubble Theories and (In-)Determinacy
- "Pure" Unit of Account Theory

Sargent and Wallace's Unpleasant Monetary Arithmetic

- With medium of exchange role of $\mathcal{M} \to \mathsf{but}\ \tilde{\sigma} = 0$ to avoid possibility of bubble mining.
- Sargent and Wallace (SW) point out that "even in an economy that satisfies monetarist assumptions [...] monetary policy cannot permanent control [...] inflation"
 - They consider an economy in which \mathcal{P}_t is fully determined by money demand $\nu \mathcal{M}_t = \mathcal{P}_t Y_t$
 - But the fiscal authority is "dominant": sets *deficits* independently of monetary policy actions
- SW emphasize seigniorage from money creation
 - Fiscal needs determine the total present value of *seigniorage*.
 - If monetary authority provides less, lower seigniorage today raises future government debt.
 - Required fiscal backing remains and the shortfall must be made up later via money printing.
 - **Tight money now means higher inflation eventually (Unpleasant Arithmetic)**.
- Controlling inflation is not always within the central bank's hands. Even when money demand determines the price level, fiscal policy can dominate in the long run.

Sargent and Wallace (1981)

1 Money Mode

- Model Setup
- Frictionless Benchmark
- Adding Financial Frictions
- Adding Monetary Frictions
- \blacksquare Separating Money $\mathcal M$ and Gov. Bonds $\mathcal B$

2 Monetary Policy

- "Pure" Monetary Policy vs. with Fiscal Implications
- Sims' Stepping on the Rake with Long-Maturity Bonds
- Quantitative Easing

3 Monetary Fiscal Connection

- Inflation–Fiscal Link
- Sargent-Wallace's Unpleasant Monetary Arithmetic

- Fiscal Backing and the Fiscal Theory of the Price Level
- Bubble Theories and (In-)Determinacy
- "Pure" Unit of Account Theory

The Determinacy Question

So far: analysis of value of money restricting attention to monetary steady states

- but this might not be the only equilibrium
- in fact, for constant $\check{\mu}^{\mathcal{M}}$ -policies: a second, non-monetary steady state exists
- Important question in monetary economics: under which conditions is the equilibrium unique?
- Why does this matter?
 - want to use model to analyze comparative statics, policy actions, transmission mechanisms, etc.
 - but this is difficult if there are multiple equilibria
 - which equilibria should we compare?
 - "intrinsic" effects of policy actions vs. effects of changing coordination

Notions of Uniqueness

- Strong notion: unique rational expectations (RE) equilibrium
- Various weaker notions in monetary literature:
 - locally unique RE equilibrium: no other equilibrium remains always nearby
 - requires non-negligible change in private-sector beliefs to coordinate on different one
 - unique Markov-perfect / minimum state variable equilibrium: no other equilibrium as function of minimal state space
 - without aggregate risk and time trends: steady state uniqueness
 - unique asymptotically monetary equilibrium: for all other RE equilibria, value of money vanishes in the long run
 - only equilibrium consistent with expectation that value of money will remain bounded away from zero
- Here: let's focus on strong notion and third weak notion

Remark: Government Policy Paths versus Rules

- Determinacy may depend on government policy
- For many questions, it is sufficient to specify policy along the equilibrium path
- However, for determinacy, this is insufficient:
 - we need to contemplate what the government would do if markets coordinated on different outcomes
 - to do so, we need a full government policy rule (or strategy) that specifies how the government would act at off-equilibrium nodes of the game tree
- Once we specify policy rules, we have to be careful that they are feasible also off-equilibrium, e.g.:
 - the government cannot violate its flow budget constraint at off-equilibrium prices
 - the government cannot commit to fund a primary deficit (negative taxes) in states in which money is worthless

Outline for Determinacy Analysis

- In the following: analyze determinacy in the money model
- To simplify matters:
 - assume no physical investment and no government expenditure, $\phi \to \infty$, then wealth per unit of capital is constant:

$$q_t = q = \frac{a}{\rho}$$

- keep only one motive for holding money active at a time (backing, safety, transactions)
- Recall that money valuation equation

$$\mathbb{E}_{t}[d\vartheta_{t}] = \left(\rho + \check{\mu}_{t}^{\mathcal{M}\mathcal{B}} - (1 - \vartheta_{t})^{2} \tilde{\sigma}^{2} - \Delta i_{t}\right) \vartheta_{t} dt$$

must hold in any RE equilibrium

- in addition, any solution with $\vartheta_t \in [0,1] \ \forall t \ge 0$ corresponds to a valid equilibrium
- $\vartheta_t < 0$ and $\vartheta_t > 1$ inconsistent with free disposal of money or capital

1 Money Mode

- Model Setup
- Frictionless Benchmark
- Adding Financial Frictions
- Adding Monetary Frictions
- \blacksquare Separating Money $\mathcal M$ and Gov. Bonds $\mathcal B$

2 Monetary Policy

- "Pure" Monetary Policy vs. with Fiscal Implications
- Sims' Stepping on the Rake with Long-Maturity Bonds
- Quantitative Easing

3 Monetary Fiscal Connection

- Inflation–Fiscal Link
- Sargent-Wallace's Unpleasant Monetary Arithmetic

4 Price Level Determination

Fiscal Backing and the Fiscal Theory of the Price Level

- Bubble Theories and (In-)Determinacy
- "Pure" Unit of Account Theory

Fiscal Theory: Determinacy with Fiscal Backing

- Return to frictionless benchmark, $\tilde{\sigma} = 0$, $\mathfrak{T} \equiv 0$
- Suppose the fiscal authority follows the following policy rule:
 - **•** set constant taxes $\tau > 0$ after any history
 - implies that also primary surplus-capital ratio $s_t = \tau a$ is constant and positive
- Money valuation equation simplifies to

$$\mathbb{E}_{t}[d\vartheta_{t}] = \left(\rho + \check{\mu}_{t}^{\mathcal{M}}\right)\vartheta_{t}dt = \left(\rho\vartheta_{t} - \frac{s_{t}}{q}\right)dt = \rho\left(\vartheta_{t} - \tau\right)dt$$

• This has a unique solution contained in [0, 1]:

$$\vartheta_t = \vartheta^{\textit{ss}} := \tau$$

- if $\vartheta_t > \vartheta^{ss}$, $\mathbb{E}_t[d\vartheta_t] > 0 \rightarrow$ solution eventually > 1
- $\blacksquare \mbox{ if } \vartheta_t < \vartheta^{\rm ss}, \ \mathbb{E}_t[d\vartheta_t] < 0 \rightarrow \mbox{ solution eventually} > 1$
- Conclusion (*Fiscal Theory of the Price Level*): fiscal backing can generate a determinate value of money

FTPL: The Role of Fiscal Policy

- The previous logic generalizes if we replace constant s by any path of positive s_t
 - positive is essential: the government must expend real resources to provide backing
 - strictly speaking, $s_t > 0$ for all t not needed, positive present value is sufficient
- But the nature of the fiscal rule matters
 - A rule that fixes µ^{MB} ≤ −ρ instead of s is consistent with continuum of RE equilibria:

$$\mathbb{E}_{t}[d\vartheta_{t}] = \left(\rho + \check{\mu}^{\mathcal{M}}\right)\vartheta_{t}dt \Leftrightarrow \vartheta_{t} = \vartheta_{0}e^{\left(\rho + \check{\mu}^{\mathcal{M}}\right)t}$$

• A rule that adjusts taxes to "keep debt sustainable", e.g., $\tau_t = \tau^0 + \alpha(\vartheta_t - \tau^0)$ ($\alpha > 1$), leads to indeterminacy:

$$\mathbb{E}_t[d\vartheta_t] = \rho(\vartheta_t - \tau_t) \, dt = \rho(1 - \alpha) \left(\vartheta_t - \tau^0\right) \, dt$$

$$\Leftrightarrow \qquad \vartheta_t = \tau^0 + e^{-\rho(\alpha - 1)t} (\vartheta_0 - \tau^0) \vartheta_0 e^{-(\alpha - 1)t}$$

 \blacksquare Latter case is the baseline assumption in NK literature \rightarrow neutralizes effect on fiscal backing on determinacy

1 Money Mode

- Model Setup
- Frictionless Benchmark
- Adding Financial Frictions
- Adding Monetary Frictions
- \blacksquare Separating Money $\mathcal M$ and Gov. Bonds $\mathcal B$

2 Monetary Policy

- "Pure" Monetary Policy vs. with Fiscal Implications
- Sims' Stepping on the Rake with Long-Maturity Bonds
- Quantitative Easing

3 Monetary Fiscal Connection

- Inflation–Fiscal Link
- Sargent-Wallace's Unpleasant Monetary Arithmetic

- Fiscal Backing and the Fiscal Theory of the Price Level
- Bubble Theories and (In-)Determinacy
- "Pure" Unit of Account Theory

Bubble Theory: Global Indeterminacy in Models

Suppose $s = \check{\mu}^{MB} = 0$ and either of the following

- a there is idiosyncratic risk $\tilde{\sigma} > \sqrt{\rho}$
- (b) there are transaction costs $\mathfrak{T}_t(
 u) > 0$
- We focus on case (a) for concreteness, case (b) is similar

(with some complications, see lecture notes)

The money valuation equation is then

$$\mathbb{E}_t[d\vartheta_t] = \underbrace{\left(\rho - (1 - \vartheta_t)^2 \tilde{\sigma}^2\right)}_{\text{strictly increasing in } \vartheta_t} \vartheta_t dt$$

■ This has a continuum of solutions contained in [0,1]

- the non-monetary steady state, $\vartheta_t = 0$
- the monetary steady state, $\vartheta_t = \vartheta^{ss} := rac{ ilde{\sigma} \sqrt{
 ho}}{ ilde{\sigma}}$
- a nonstationary equilibrium for each $\vartheta_0 \in (0, \vartheta^{ss})$ that features $\vartheta_t > 0$ for all t but $\vartheta_t \to 0$ as $t \to 0$

Global Indeterminacy: Intuition

- \blacksquare Conclusion from last slide: RE equilibrium is not unique \rightarrow indeterminacy
- This is because money does not provide intrinsic value
- Instead, it generates services from trading it:
 - as safe asset: provides risk sharing because it is *sold* to smooth idiosyncratic shocks
 - as medium of exchange: provides transaction services because it is used to pay for goods
- Value for individual therefore depends on resale value in exchange
 - but resale value depends on value for buyer
 - which in turn depends on resale value in next transaction
- $\rightarrow\,$ In bubble theories, value of money depends on *social coordination*: infinite chain of beliefs how others will value it in future transactions

Bubble Theories and Weak Determinacy

 \blacksquare Despite this indeterminacy, there is a good reason to select $\vartheta_t = \vartheta^{\rm ss}$

- \blacksquare it is the only equilibrium with asymptotically valued money, $\lim_{t\to\infty} \vartheta_t > 0$
- to sustain any other equilibrium, agents must believe there is eventual (hyper-)inflation that erodes the value of money
- Aside, $\vartheta_t = \vartheta^{ss}$ has also other properties that sets it apart:
 - it is locally unique and the only RE equilibrium that is
 - it is a minimum state variable equilibrium and the only one in which money has value
 - it is the only equilibrium that survives if the is a positive probability of some (arbitrarily small) fiscal backing in the future
Outline

1 Money Model

- Model Setup
- Frictionless Benchmark
- Adding Financial Frictions
- Adding Monetary Frictions
- \blacksquare Separating Money $\mathcal M$ and Gov. Bonds $\mathcal B$

2 Monetary Policy

- "Pure" Monetary Policy vs. with Fiscal Implications
- Sims' Stepping on the Rake with Long-Maturity Bonds
- Quantitative Easing

3 Monetary Fiscal Connection

- Inflation–Fiscal Link
- Sargent-Wallace's Unpleasant Monetary Arithmetic

4 Price Level Determination

- Fiscal Backing and the Fiscal Theory of the Price Level
- Bubble Theories and (In-)Determinacy
- "Pure" Unit of Account Theory

A Model without Money as an Asset

- Take the frictionless benchmark and set $\mathcal{M}_t = 0$ (which implies $\tau = s = 0$)
- \blacksquare Then $\vartheta=0$ and all remaining model equations remain valid
- The real side of this model is trivial:
 - capital grows at a constant rate g
 - agents consume $C_t = aK_t$ (there is no idiosyncratic risk)
 - the real interest rate is $r = \rho + g$
- We can still add money as a unit of account by adding a zero net supply nominal bond
 - nominal interest rate i_t controlled by the central bank
 - portfolio choice leads to a Fisher equation (without risk)

$$i_t = r + \pi_t, \qquad \pi_t := \mu_t^{\mathcal{P}}$$

- Question: is there a unique equilibrium price level path \mathcal{P}_t ?
 - answer: it depends on *i*-policy (and the notion of uniqueness)

Indeterminacy under Exogenous Interest Rates

• Suppose the central bank sets an exogenous time path for i_t

Then by the Fisher equation

$$\pi_t = i_t - r = i_t - \rho - g$$

is determined

- But the initial price level P₀ is not
- In addition, even π_t is only determined among all perfect foresight equilibria
 - there are additional sunspot RE equilibria with different inflation (and price volatility)

(Local) Determinacy with Wicksellian Feedback Rules

Let's instead assume the central bank follows a price level feedback rule

$$i_t = i_t^0 + \phi_{\mathcal{P}} \log \mathcal{P}_t, \qquad \phi_{\mathcal{P}} > 0$$

• i_t^0 is an exogenous (bounded) intercept path

- $\phi_{\mathcal{P}} \log \mathcal{P}_t$ incorporates feedback from observed price levels to i_t
- This is called a *Wicksellian interest rate rule* (Wicksell 1898)
- Combining this rule with $d\mathcal{P}_t = \pi_t \mathcal{P}_t dt$ and the Fisher equation yields

$$d \log \mathcal{P}_t = d\mathcal{P}_t/\mathcal{P}_t = \left(i_t^0 - r + \phi_{\mathcal{P}} \log \mathcal{P}_t\right) dt$$

$$\Rightarrow \quad \log \mathcal{P}_t = e^{\phi \mathcal{P} t} \left(\log \mathcal{P}_0 - \log \mathcal{P}_0^*\right) - \int_t^\infty e^{-\phi \mathcal{P}(s-t)} (i_s^0 - r) ds, \qquad \log \mathcal{P}_0^* := -\int_0^\infty e^{-\phi \mathcal{P} t} (i_t^0 - r) dt$$

All but one solutions (the one with $\mathcal{P}_0 = \mathcal{P}_0^*$) lead to unbounded $\mathcal{P}_t \& \pi_t$

- there is nothing wrong with these unbounded solutions economically
- but if we add as an additional selection rule that we seek bounded solutions, then there is a unique \mathcal{P}_t solution
- in addition, that one is the only locally unique one

=

(Local) Determinacy with Taylor Rules

Contemporary literature: inflation instead of price level feedback (Taylor 1993)

$$i_t = i_t^0 + \phi_\pi \pi_t, \qquad \phi_\pi > 1$$

These do not work in continuous time without additional inertia, e.g.

- interest rate smoothing
- long-term nominal bonds
- sticky prices
- With such inertia, such a rule can determine the path of inflation in the same way as a Wicksellian rule
 - i.e., we need to add the selection criteria "bounded inflation"
- But it will still not determine the price *level* unless prices are sticky

Appendix: Derivation for Govt. Liab. and FTPL Equation

$$\begin{aligned} H_t = e^{-\rho t} \log c_t - \xi_t c_t \\ + \xi_t n_t \Biggl\{ (1 - \theta_t) \frac{\mathbb{E}_t [dr_t^{\mathcal{K}, \tilde{i}}(\iota_t, \nu_t)]}{dt} + \theta_t \underbrace{\left[(1 - \theta_t^{\mathcal{M}}) \frac{\mathbb{E}_t [dr_t^{\mathcal{B}}]}{dt} + \theta_t^{\mathcal{M}} \frac{\mathbb{E}_t [dr_t^{\mathcal{M}}]}{dt} \right]}{dt} \Biggr\} \\ - \xi_t n_t \tilde{\xi}_t (1 - \theta_t) \tilde{\sigma} \\ + \lambda_t^{\mathcal{M}} \xi_t n_t \left[\theta_t \theta_t^{\mathcal{M}} \nu_t - (1 - \theta_t) \frac{a}{q_t^{\mathcal{K}}} \right] \end{aligned}$$

First order conditions w.r.t:

$$\begin{aligned} \theta_t^{\tilde{i}} : & \frac{\mathbb{E}_t[\mathrm{d}r_t^{K,\tilde{i}}(\iota_t,\nu_t)]}{\mathrm{d}t} - \frac{\mathbb{E}_t[\mathrm{d}r_t^{\mathcal{M}\mathcal{B}}]}{\mathrm{d}t} = \tilde{\varsigma}\tilde{\sigma} + \lambda_t^{\mathcal{M}}\left(\nu_t\theta_t^{\mathcal{M}} + \frac{a}{q_t^{K}}\right) \\ \theta_t^{\mathcal{M}\tilde{i}} : & \frac{\mathbb{E}_t[\mathrm{d}r_t^{\mathcal{B}}]}{\mathrm{d}t} - \frac{\mathbb{E}_t[\mathrm{d}r_t^{\mathcal{M}}]}{\mathrm{d}t} = \lambda_t^{\mathcal{M}}\nu_t \\ \nu_t^{\tilde{i}} : & (1-\theta_t)\frac{\partial\mathbb{E}[\mathrm{d}r_t^{K,\tilde{i}}(\iota_t,\nu_t)]/\mathrm{d}t}{\partial\nu_t} + \lambda_t^{\mathcal{M}}\theta_t\theta_t^{\mathcal{M}} = 0 \end{aligned}$$

Recall Return Equation and Take Differences

$$\frac{\mathbb{E}_t[\mathrm{d}r_t^{K,\tilde{i}}(\iota_t,\nu_t)]}{dt} = \frac{a - \mathscr{G} - \iota_t^{\tilde{i}} - \mathfrak{t}(\nu_t^{\tilde{i}})}{q_t^K} + \frac{q_t^{\mathcal{M}}\check{\mu}_t^{\mathcal{M}} + q_t^{\mathcal{B}}\check{\mu}_t^{\mathcal{B}}}{q_t^K} + \Phi(\iota_t^{\tilde{i}}) - \delta + \mu_t^{q^K}$$
(1)

$$\frac{\mathbb{E}_t[\mathrm{d}r_t^{\mathcal{B}}]}{\mathrm{d}t} = \qquad \qquad \check{\mu}_t^{\mathcal{B}} + \Phi(\iota_t^{\tilde{i}}) - \delta + \mu_t^{q^{\mathcal{B}}} = i_t^{\mathcal{B}} - \pi_t \qquad (2)$$

$$\frac{\mathbb{E}_t[\mathrm{d}r_t^{\mathcal{M}}]}{dt} = \qquad \qquad \check{\mu}_t^{\mathcal{M}} + \Phi(\iota_t^{\tilde{i}}) - \delta + \mu_t^{q^{\mathcal{M}}} = i_t^{\mathcal{M}} - \pi_t \qquad (3)$$

Take difference (2) and (3): $\frac{\mathbb{E}_t[\mathrm{d} r_t^{\mathcal{B}}]}{\mathrm{d} t} - \frac{\mathbb{E}_t[\mathrm{d} r_t^{\mathcal{M}}]}{\mathrm{d} t} = \Delta i_t$ Take weighted sum of (2) and (3):

$$\frac{\mathbb{E}_{t}[\mathrm{d}r_{t}^{\mathcal{M}}]}{\mathrm{d}t} = \underbrace{\vartheta_{t}^{\mathcal{B}}\check{\mu}_{t}^{\mathcal{B}} + \vartheta_{t}^{\mathcal{M}}\check{\mu}_{t}^{\mathcal{M}}}_{\check{\mu}_{t}^{\mathcal{M}}} + \vartheta_{t}^{\mathcal{B}}\check{\mu}_{t}^{q^{\mathcal{B}}} + \vartheta_{t}^{\mathcal{M}}\check{\mu}_{t}^{q^{\mathcal{M}}} + \Phi(\iota_{t}^{\tilde{i}}) - \delta \qquad (4)$$

■ Take difference of (1) and (4)

$$\frac{a - \mathscr{G} - \iota_t^{\tilde{i}} - \mathfrak{t}(\nu_t^{\tilde{i}})}{q_t^K} + \frac{1}{1 - \vartheta_t}\check{\mu}_t^{\mathcal{M}} + \mu_t^{q^K} - \underbrace{\vartheta_t^{\mathcal{B}} \mu_t^{q^{\mathcal{B}}} + \vartheta_t^{\mathcal{M}} \mu_t^{q^{\mathcal{M}}}}_{= -\mu_t^{\vartheta}/(1 - \vartheta_t)}$$

Government Liability Valuation Equation

Plug into FOC w.r.t. θ_t :

Plug into FOC w.r.t.
$$\vartheta_t^{\mathcal{M}}$$
: $\Delta i_t = \lambda_t^{\mathcal{M}} \nu_t$

Government Liability Valuation Equation:

$$\mu^{artheta}_t =
ho - (1 - artheta_t)^2 ilde{\sigma}^2 + \check{\mu}^{\mathcal{M}\mathcal{B}}_t - artheta^{\mathcal{M}}_t \Delta \dot{\mu}_t$$

FTPL-Equation with \mathcal{B} and \mathcal{M}

• Money valuation equation for log utility $\gamma = 1$:

$$\vartheta_{t}\mu_{t}^{\vartheta} = \vartheta_{t}\left(\underbrace{\rho + \underbrace{g}_{=r^{f}-g} - g - (1 - \vartheta_{t})^{2} \tilde{\sigma}^{2}}_{=r^{f}-g} + \check{\mu}_{t}^{\mathcal{M}} - \vartheta^{\mathcal{M}} \Delta i_{t}\right)$$
$$\frac{\mathcal{B}_{t} + \mathcal{M}_{t}}{\mathcal{P}_{t}} = \vartheta_{t} \mathcal{N}_{t}$$
$$\Rightarrow d\left(\frac{\mathcal{B}_{t} + \mathcal{M}_{t}}{\mathcal{P}_{t}}\right) = \left(r^{f} - g' + \check{\mu}^{\mathcal{M}} - \vartheta^{\mathcal{M}} \Delta i + \underbrace{g'}_{g'}\right) \left(\frac{\mathcal{B}_{t} + \mathcal{M}_{t}}{\mathcal{P}_{t}}\right) dt$$

Integrate forward:

$$\frac{\mathcal{B}_{0} + \mathcal{M}_{0}}{\mathcal{P}_{0}} = \mathbb{E} \bigg[\int_{0}^{T} e^{-r^{f}t} \underbrace{\left(-\check{\mu}_{t}^{\mathcal{M}} + \vartheta_{t}^{\mathcal{M}} \Delta_{i}\right) \frac{\mathcal{B}_{t} + \mathcal{M}_{t}}{\mathcal{P}_{t}}}_{=s\mathcal{K}_{t} + \frac{\mathcal{M}_{t}}{\mathcal{P}_{t}} \Delta_{i}} \mathrm{d}t + e^{-r^{f}T} \frac{\mathcal{B}_{t} + \mathcal{M}_{t}}{\mathcal{P}_{t}} \bigg]$$

FTPL Equation:

$$\frac{\mathcal{B}_0 + \mathcal{M}_0}{\mathcal{P}_0} = \mathbb{E}_0[\int_0^T e^{-r^f t} s_t \mathcal{K}_t \mathrm{d}t] + \mathbb{E}_0[\int_0^T e^{-r^f t} \Delta i_t \frac{\mathcal{M}_t}{\mathcal{P}_t} \mathrm{d}t] + \mathbb{E}_0[e^{-r^f T} \frac{\mathcal{B}_T + \mathcal{M}_T}{\mathcal{P}_T}]$$

FTPL-Equations with \mathcal{B} and \mathcal{M} : Joint and Separately

Two ways to write FTPL equation

$$\frac{\mathcal{B}_{0} + \mathcal{M}_{0}}{\mathcal{P}_{0}} = \mathbb{E}_{0} \int_{0}^{T} e^{-r^{f}t} s_{t} \mathcal{K}_{t} dt + \mathbb{E}_{0} \int_{0}^{T} e^{-r^{f}t} \Delta i_{t} \frac{\mathcal{M}_{t}}{\mathcal{P}_{t}} dt + \mathbb{E}_{0} e^{-r^{f}T} \frac{\mathcal{B}_{T} + \mathcal{M}_{T}}{\mathcal{P}_{T}} \\ \frac{\mathcal{B}_{0}}{\mathcal{P}_{0}} = \mathbb{E}_{0} \int_{0}^{T} e^{-r^{f}t} s_{t} \mathcal{K}_{t} dt + \mathbb{E}_{0} \int_{0}^{T} e^{-r^{f}t} \mu_{t}^{\mathcal{M}} \frac{\mathcal{M}_{t}}{\mathcal{P}_{t}} dt + \mathbb{E}_{0} e^{-r^{f}T} \frac{\mathcal{B}_{T}}{\mathcal{P}_{T}}$$

Take difference:

$$\frac{\mathcal{M}_0}{\mathcal{P}_0} = \mathbb{E}_0 \int_0^T e^{-r^f t} (\Delta i_t - \mu_t^{\mathcal{M}}) \frac{\mathcal{M}_t}{\mathcal{P}_t} \mathrm{d}t + \mathbb{E}_0 e^{-r^f T} \frac{\mathcal{M}_T}{\mathcal{P}_T}$$

(may contain bubble term when take $T o \infty$)

Back

Sargent and Wallace (1981)

- Assume that in equilibrium
 - 1 the payment constraint is always binding
 - **2** surpluses satisfy $s_t = \underline{s}, \underline{s} \leq 0$ (constant deficit-GDP ratio)
 - 3 $\nu > \rho$ (given log-utility)
- Then nominal wealth shares must satisfy:

$$\vartheta_t \vartheta_t^{\mathcal{M}} = \rho/\nu \quad \text{(from goods market clearing condition)}$$
$$\vartheta_t \vartheta_t^{\mathcal{B}} = \int_t^\infty \rho e^{-\rho(t'-t)} (s_{t'} + s_{t'}) dt' = \underbrace{\underline{s}}_{<0} + \int_t^\infty \rho e^{-\rho(t'-t)} s_{t'} dt'$$

Suppose after time T < ∞ the fiscal authority can take control of µ^M_t.
 Fiscal authority chooses seigniorage to keep debt-GPD ratio constant, i.e.

$$s_t = \hat{s}(\vartheta_T^{\mathcal{B}}) := -\underline{s} + \vartheta_T \vartheta_T^{\mathcal{B}}, \quad t \geq T$$

(there are limites on feasible seigniorage but let's ignore this for simplicity)

For t ≤ T, the monetary authority chooses (constant) µ^M independently
 Also s_t = µ^Mq_t^M = µ^M(a - g)/ν =: s is controlled by the monetary authority

"Unpleasant Arithmetic" Proposition: Tight money now means higher inflation eventually.

• The (constant) inflation rate over $[T,\infty)$ is strictly decreasing in $\mu^{\mathcal{M}}$ over [0,T]

Why Does the Sargent-Wallace Proposition Hold?

Iterating government liabilities valuation equation forward in time:

$$\vartheta_{\mathcal{T}}\vartheta_{\mathcal{T}}^{\mathcal{B}} = \vartheta_{0}\vartheta_{0}^{\mathcal{B}} - \int_{0}^{\mathcal{T}} \rho e^{-\rho t} (\underline{s} + s) \mathrm{d}t$$

- Lower money µ^M_t over [0, T] ⇒ lower seigniorage transfers s = µ^M(a g)/ν ⇒ debt grows faster
- Higher debt at *T*: need larger seigniorage thereafter to cover interest payments:
 recall
 â(ϑ^B_T) = -<u>s</u> + ϑ_Tϑ^B_T is increasing in ϑ^B_T

Illustration of Unpleasant Arithmetic

Monetary Dominance

Suppose $T = \infty$: monetary authority is always in control of the money supply

- Is there an equilibrium? (suppose also $\vartheta \neq \vartheta_0 \vartheta_0^{\mathcal{B}} \underline{s}$)
 - not with constant deficit/ K_t -ratio $s_t = \underline{s}$
 - but: a constant deficit is not necessarily feasible policy

Two cases

- 1 if $\beta > \vartheta_t \vartheta_t^{\mathcal{B}} \underline{s}$, $s_t = \underline{s} < 0$ remains feasible
 - **\blacksquare** but fiscal authority will absorb money over time, effective money suppply is smaller than \mathcal{M}_t
 - fiscal authority controls inflation

(e.g. if real debt to K_t ratio is kept constant, outcomes as if $\delta = \vartheta_0 \vartheta_0^{\mathcal{B}} - \underline{s}$)

- 2 if $\beta < \vartheta_t \vartheta_t^{\mathcal{B}} \underline{s}$, s_t has to rise to avoid default on nominal bonds
 - fiscal authority effectively faces an "intertemporal budget constraint"
 - e.g. smallest constant primary surpluses (per K_t is $s = \vartheta_0 \vartheta_0^{\mathcal{B}} s$)

Back