Macrofinance

Lecture 02: Stochastic Optimization in Continuous Time

Markus Brunnermeier

Princeton University

Summer, 2025

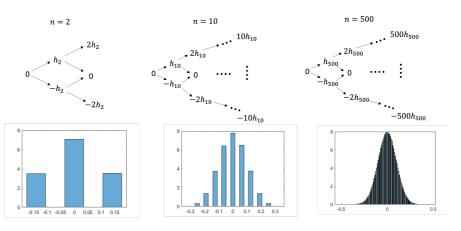
Overview of Lecture 02

- Basic Itô Calculus
- Single-Agent Consumption-Portfolio Choice
- Stochastic Control Methods in Continuous Time
 - Hamilton-Jacobi-Bellman (HJB) Equation
 - Stochastic Maximum Principle (Pontryagin)
 - Martingale Method

Brownian Motion dZ

Brownian Motion as a binomial tree over Δt .

■ More steps with shrinking step size: $h_n = \sigma \sqrt{\Delta t/n}$



Notations for Itô's Process

- Arithmetic Itô's Process: $dX_t = \mu_{X,t} dt + \sigma_{X,t} dZ_t$
 - \blacksquare X in the subscript of μ and σ
 - $\mu_{X,t}$ and $\sigma_{X,t}$ (can be) time varying
- Geometric Itô's Process: $dX_t = \mu_t^X X_t dt + \sigma_t^X X_t dZ_t$
 - **X** in the superscript of μ and σ .
 - Example: Stock goes up 32% or down 32% over a year (256 trading days):

$$\sigma^{X} = \frac{32\%}{\sqrt{256}} = 2\%$$

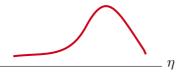
■ Note: This is not a general convention, but used during this course.

Itô Processes: Characterization, Skewness over Δt

■ Itô processes ... fully characterized by drift and volatility

$$dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dZ_t$$

- Arithmetic Itô's Process: $dX_t = \mu_{X,t} dt + \sigma_{X,t} dZ_t$
- Geometric Itô's Process: $dX_t = \mu_t^X X_t dt + \sigma_t^X X_t dZ_t$
- Characterization for full volatility dynamics on Prob.-space
 - Discrete time: Probability loading on states conditional expectations $\mathbb{E}[X|Y]$ difficult to handle
 - Cts. time Loading on a Brownian Motion $\mathrm{d}Z_t$ captured by σ
- Normal distribution for dt, yet with skewed distribution for $\Delta t > 0$



- If σ_t is time-varying
- E.g. from normal-dt to log-normal- Δt and vice versa (geometric dX_t .)

Basics of Itô's Calculus

■ Itô's Lemma in geometric notation:

$$df(X_t) = \left[f'(X_t) \mu_t^{\mathbf{X}} \mathbf{X}_t + \frac{1}{2} f''(x) \left(\sigma_t^{\mathbf{X}} \mathbf{X}_t \right)^2 \right] dt + f'(X_t) \sigma_t^{\mathbf{X}} \mathbf{X}_t dZ_t$$

■ Example: SDF's volatility for CRRA utility: $u(c) = \frac{c^{1-\gamma}-1}{1-\gamma}, u'(c) = c^{-\gamma}$

$$\xi_t = e^{-\rho t} \frac{c_t^{-\gamma}}{c_0^{-\gamma}} \Rightarrow \sigma_t^{\xi} = -\gamma \sigma_t^c$$

■ Itô product rule: (stock price * exchange rate)

$$\frac{d(X_t Y_t)}{X_t Y_t} = (\mu_t^X + \mu_t^Y + \sigma_t^X \sigma_t^Y) dt + (\sigma_t^X + \sigma_t^Y) dZ_t$$

■ Itô ratio rule:

$$\frac{d(X_t/Y_t)}{X_t/Y_t} = \left[\mu_t^X - \mu_t^Y + \sigma_t^Y (\sigma_t^Y - \sigma_t^X)\right] dt + (\sigma_t^X - \sigma_t^Y) dZ_t$$

Overview

- Basic Itô Calculus
- Single-Agent Consumption-Portfolio Choice
- Stochastic Control Methods in Continuous Time
 - Hamilton-Jacobi-Bellman (HJB) Equation
 - Stochastic Maximum Principle (Pontryagin)
 - Martingale Method

Single-Agent Consumption-Portfolio Choice

■ Choose consumption $\{c_t\}_{t=0}^{\infty}$ and portfolio weights to $\{\theta_t\}_{t=0}^{\infty}$ to maximize:

$$\mathbb{E}\left[\int_0^\infty e^{-
ho t} u(c_t) dt
ight], \quad ext{with } u(c) = rac{c^{1-\gamma}-1}{1-\gamma}$$

- Subject to:
 - Net worth evolution

$$\forall t > 0 : \mathrm{d}n_t = -c_t \mathrm{d}t + n_t [\theta_t r_t \mathrm{d}t + (1 - \theta_t) \mathrm{d}r_t^a]$$

- A solvency constraint: $\forall t>0, n_t\geqslant 0$.

 alternatively, a "no Ponzi condition" leads to identical solution
- Beliefs about:
 - r_t risk-free rate
 - $\mathrm{d}r_t^a$ risky asset return process with risk premium δ_t^a : $\mathrm{d}r_t^a = (r_t + \delta_t^a)\mathrm{d}t + \sigma_t^a\mathrm{d}Z_t$
 - Take prices/returns as given

State Space

■ Suppose returns are a function of state variable η_t :

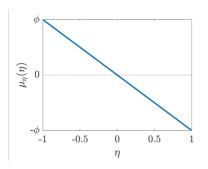
$$r_t = r(\eta_t), \quad \delta_t^a = \delta^a(\eta_t), \quad \sigma_t^a = \sigma^a(\eta_t)$$

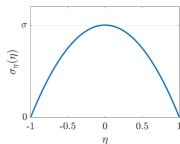
 \blacksquare η_t evolves according to a diffusion process:

$$d\eta_t = \mu_t^{\eta}(\eta_t)\eta_t dt + \sigma_t^{\eta}(\eta_t)\eta_t dZ_t$$

- with initial state η_0 given
- Then decision problem has two state variables:
 - \blacksquare n_t controlled state
 - \blacksquare η_t external state
- For each initial state (n_0, η_0) we have a separate decision problem

Example: Functional Forms





$$\mu^{\eta} \eta = \mu_{\eta} = -\phi \eta, \qquad \sigma_{\eta}(\eta) = \sigma(1 - \eta^2)$$

Asset returns:

$$r(\eta) = r^0 + r^1 \eta$$
, $\delta^a(\eta) = \delta^0 - \delta^1 \eta$, $\sigma^a(\eta) = \sigma^0 - \sigma^1 \eta$

■ With parameters: $r^0, r^1, \delta^0, \delta^1, \sigma^0, \sigma^1 \ge 0$

Stochastic Control Methods in Continuous Time

- Hamilton-Jacobi-Bellman (HJB) Equation
 - Continuous-time version of Bellman Equation
 - **Requires Markovian formulation w explicit state space defin.:** $V(\cdot)$ vs $V_t(\cdot)$
 - **Solve** (Postulate) value function $V(n, \eta)$
- Stochastic Maximum Principle
 - Conditions that characterize path of optimal solution (as opposed to whole value function)
 - Closer to discrete-time Euler equations than Bellman equation
 - Does not require Markovian problem structure
 - Solve (Postulate) co-state variable ξ_t^i
- Martingale Method
 - (Very general) shortcut for portfolio choice problem
 - Yields interpretable equations (effectively linear factor pricing equations)
 - But: tailored to specific problems (portfolio choice), non-trivial to apply elsewhere
 - Postulate SDF process: $d\xi_t^i/\xi_t^i$

Method 1: Hamilton-Jacobi-Bellman (HJB) Equation

- Stochastic version of single-agent consumption-portfolio choice
- HJB differential equation
- Special cases:
 - Constant returns
 - Time-varying returns

Value Function and Principle of Optimality

- Notation:
 - $\mathcal{A}(n,\eta)$: set of admissible choices $\{c_t,\theta_t\}_{t=0}^{\infty}$ given the initial conditions: $n_0=n,\eta_0=\eta$
 - $\mathcal{A}_T(n,\eta)$: set of policies $\{c_t,\theta_t\}_{t=0}^T$ over [0,T] that have admissible extensions to $[0,\infty)$, $\{c_t,\theta_t\}_{t=0}^\infty \subset \mathcal{A}(n,\eta)$
- Define the value function of the decision problem:

$$V(n,\eta) := \max_{\{\theta_t,c_t\}_{t=0}^{\infty} \in \mathcal{A}(n,\eta)} \mathbb{E}_t \left[\int_0^{\infty} e^{-\rho t} u(c_t) dt \right]$$

 $lue{}$ It is easy to see that V satisfies the Bellman principle of optimality: for all T>0

$$V(n,\eta) := \max_{\{\theta_t, c_t\}_{t=0}^T \subset \mathcal{A}_T(n,\eta)} \mathbb{E}_t \left[\int_0^T e^{-\rho t} u(c_t) dt + e^{-\rho T} V(n_T, \eta_T) \right]$$

(where n_T depends on the choice $\{\theta_t, c_t\}_{t=0}^T$ over [0, T].)

A Stochastic Version of the HJB Equation: Derivation

■ With $V_t := V(n_t, \eta_t)$, can write the principle of optimality as:

$$0 = \max_{\{\theta_t, c_t\}_{t=0}^T \subset \mathcal{A}_T(n_0, \eta_0)} \mathbb{E}_t \left[\int_0^T e^{-\rho t} u(c_t) \mathrm{d}t + e^{-\rho T} V_T - V_0 \right]$$

By integrating by part:

$$e^{-\rho T}V_T - V_0 = -\rho \int_0^T e^{-\rho t}V_t dt + \int_0^T e^{-\rho t}dV_t$$

Combine with previous equation:

$$0 = \max_{\{\theta_t, c_t\}_{t=0}^T \subset \mathcal{A}_T(n_0, \eta_0)} \mathbb{E}_t \left[\int_0^T e^{-\rho t} (u(c_t) - \rho V_t) dt + \int_0^T e^{-\rho t} dV_t \right]$$

■ Divide by T, and take limit $T \downarrow 0$:

Literally this yields the following equation only for t=0, but we can shift time to any intitial time due to Markovian

$$\rho V_t dt = \max_{c_t, \theta_t} \{ u(c_t) dt + \mathbb{E}[dV_t] \}$$

A Stochastic Version of the HJB Equation: Interpretation

Stochastic version of HJB:

$$\rho V_t \mathrm{d}t = \max_{c_t, \theta_t} \{ u(c_t) \mathrm{d}t + \mathbb{E}[dV_t] \}$$

- lacksquare = implicit backward stochastic differential equation (BSDE) for value process V_t
- What does it mean?
 - lacktriangle Stochastic: equation for the stochastic process V_t is not a deterministic function
 - Differential equation: relates time differential dV_t to process value V_t (& other variables)
 - Backward: forward-looking equation that must be solved backward in time, determines only expected time differential $\mathbb{E}[dV_t]$, volatility process is part of the solution
 - Implicit: $\mathbb{E}[dV_t]$ is not explicitly solved for, instead part of non-linear expression on right-hand side (due to max operator)

Digression: Alternative Derivation: Time Approximation

■ Usual way of writing discrete time Bellman Equation $(\beta := e^{-\rho})$

$$V(n_t, \eta_t) = \max_{c_t, \theta_t} \{u(c_t) + \beta \mathbb{E}_t[V(n_{t+1}, \eta_{t+1})]\}$$

■ More generally, with generic period length $\Delta t > 0$ ($\beta = e^{-\rho \Delta t}$):

$$V(n_t, \eta_t) = \max_{c_t, \theta_t} \{ u(c_t) \Delta t + \beta \mathbb{E}_t [V(n_{t+\Delta t}, \eta_{t+\Delta t})] \}$$

Subtract $\beta V(n_t, \eta_t)$ from both sides:

$$\frac{1-\beta}{\Delta t}V(n_t,\eta_t)\Delta t = \max_{c_t,\theta_t}\{u(c_t)\Delta t + \beta \mathbb{E}_t[V(n_{t+\Delta t},\eta_{t+\Delta t}) - V(n_t,\eta_t)]\}$$

Taking the limit $\Delta t \rightarrow 0$ yields again:

$$\rho V(n_t, \eta_t) dt = \max_{c_t, \theta_t} \{ u(c_t) dt + \mathbb{E}_t [dV(n_t, \eta_t)] \}$$

Method 1: Hamilton-Jacobi-Bellman (HJB) Equation

- Stochastic version of single-agent consumption-portfolio choice
- HJB differential equation
- Special cases:
 - Constant returns
 - Time-varying returns

- Next step: transform stochastic version of HJB into a (non-stochastic) differential equation
- General idea: use Itô's lemma to express $\mathbb{E}[dV_t]$ in terms of derivatives of value function V_t

lacksquare Which of the following is the correct one? [Recall the definition $V_t = V(n_t, \eta_t)$]

$$\begin{split} \left[\mathbf{a} \right] \quad \mathbb{E}[dV_t] &= \left(\partial_n V(n_t, \eta_t) \mu_{n,t} + \partial_\eta V(n_t, \eta_t) \mu_{\eta,t} \right) dt \\ \left[\mathbf{b} \right] \quad \mathbb{E}[dV_t] &= \left(\partial_n V(n_t, \eta_t) \mu_{n,t} + \partial_\eta V(n_t, \eta_t) \mu_{\eta,t} \right. \\ &\quad + \frac{1}{2} \left(\partial_{nn} V(n_t, \eta_t) \sigma_{n,t}^2 + \partial_{\eta\eta} V(n_t, \eta_t) \sigma_{\eta,t}^2 \right) \right) dt \\ \left[\mathbf{c} \right] \quad \mathbb{E}[dV_t] &= \left(\partial_n V(n_t, \eta_t) \mu_{n,t} + \partial_\eta V(n_t, \eta_t) \mu_{\eta,t} \right. \\ &\quad + \frac{1}{2} \left(\partial_{nn} V(n_t, \eta_t) \sigma_{n,t}^2 + \partial_{\eta\eta} V(n_t, \eta_t) \sigma_{\eta,t}^2 + \partial_{\eta n} V(n_t, \eta_t) \sigma_{\eta,t} \sigma_{n,t} \right) \right) dt \\ \left[\mathbf{d} \right] \quad \mathbb{E}[dV_t] &= \left(\partial_n V(n_t, \eta_t) \mu_{n,t} + \partial_\eta V(n_t, \eta_t) \mu_{\eta,t} \right. \\ &\quad + \frac{1}{2} \left(\partial_{nn} V(n_t, \eta_t) \sigma_{n,t}^2 + \partial_{\eta\eta} V(n_t, \eta_t) \sigma_{\eta,t}^2 \right) + \partial_{\eta n} V(n_t, \eta_t) \sigma_{\eta,t} \sigma_{n,t} \right) dt \end{split}$$

- Next step: transform stochastic version of HJB into a (non-stochastic) differential equation
- General idea: use Itô's lemma to express $\mathbb{E}[dV_t]$ in terms of derivatives of value function V_t Here, $V_t = V(n_t, \eta_t)$, so we can write:

$$\rho V_{t} dt = \max_{c_{t}, \theta_{t}} \left(u(c_{t}) + \partial_{n} V(n_{t}, \eta_{t}) \mu_{n,t} + \partial_{\eta} V(n_{t}, \eta_{t}) \mu_{\eta,t} \right. \\
\left. + \frac{1}{2} \left(\partial_{nn} V(n_{t}, \eta_{t}) \sigma_{n,t}^{2} + \partial_{\eta\eta} V(n_{t}, \eta_{t}) \sigma_{\eta,t}^{2} \right) + \partial_{\eta n} V(n_{t}, \eta_{t}) \sigma_{\eta,t} \sigma_{n,t} \right) dt$$

- Next step: transform stochastic version of HJB into a (non-stochastic) differential equation
- General idea: use Itô's lemma to express $\mathbb{E}[dV_t]$ in terms of derivatives of value function V_t Here, $V_t = V(n_t, \eta_t)$, so we can write:

$$\rho V_{t} dt = \max_{c_{t}, \theta_{t}} \left(u(c_{t}) + \partial_{n} V(n_{t}, \eta_{t}) \mu_{n,t} + \partial_{\eta} V(n_{t}, \eta_{t}) \mu_{\eta,t} \right. \\
\left. + \frac{1}{2} \left(\partial_{nn} V(n_{t}, \eta_{t}) \sigma_{n,t}^{2} + \partial_{\eta\eta} V(n_{t}, \eta_{t}) \sigma_{\eta,t}^{2} \right) + \partial_{\eta n} V(n_{t}, \eta_{t}) \sigma_{\eta,t} \sigma_{n,t} \right) dt$$

For this problem, drifts and volatilities are:

$$\mu_{n,t} = -c_t + n_t \left[r(\eta_t) + (1 - \theta_t) \delta^{\mathsf{a}}(\eta_t) \right] \qquad \mu_{\eta,t} = \mu_{\eta}(\eta_t)$$

$$\sigma_{n,t} = n_t (1 - \theta_t) \sigma^{\mathsf{a}}(\eta_t) \qquad \sigma_{\eta,t} = \sigma_{\eta}(\eta_t)$$

Combining the previous equation and dropping dt and time subscripts:

$$\begin{split} \rho V(\mathbf{n}, \eta) &= \max_{c} \left(u(c) - \partial_{\mathbf{n}} V(\mathbf{n}, \eta) c \right) \\ &+ \max_{\theta} \bigg\{ \partial_{\mathbf{n}} V(\mathbf{n}, \eta) \mathbf{n} (\mathbf{r}(\eta) + (1 - \theta) \delta^{\mathbf{a}}(\eta)) \\ &+ \left(\frac{1}{2} \partial_{\mathbf{n} \mathbf{n}} V(\mathbf{n}, \eta) \mathbf{n} (1 - \theta) \sigma^{\mathbf{a}}(\eta) + \partial_{\eta \mathbf{n}} V(\mathbf{n}, \eta) \sigma_{\eta}(\eta) \right) \mathbf{n} (1 - \theta) \sigma^{\mathbf{a}}(\eta) \bigg\} \\ &+ \partial_{\eta} V(\mathbf{n}, \eta) \mu_{\eta}(\eta) + \frac{1}{2} \partial_{\eta \eta} V(\mathbf{n}, \eta) (\sigma_{\eta}(\eta))^{2} \end{split}$$

This is a nonlinear partial differential equation (PDE) for $V(n,\eta)$ Note: nonlinearity enters through the max operator

Method 1: Hamilton-Jacobi-Bellman (HJB) Equation

- Stochastic version of single-agent consumption-portfolio choice
- HJB differential equation
- Special cases:
 - Constant returns
 - Time-varying returns

Special Case: Constant Returns

Lets first assume that returns are constant: $r_t = r, \delta^a_t = \delta^a, \sigma^a_t = \sigma^a$

Can then drop η from the problem and write the HJB as:

$$\rho V(n) = \max_{c} \left(u(c) - V'(n)c \right) + \max_{\theta} \left(V'(n)n(r + (1 - \theta)\delta^{a}) + \frac{1}{2}V''(n)n^{2}((1 - \theta)\sigma^{a})^{2} \right)$$

To solve this equation, first solve optimizations:

optimal consumption choice: marginal utility of consumption = marginal value of wealth

$$u'(c) = V'(n)$$

optimal portfolio choice: Merton portfolio weight

$$1 - \theta = \left(-\frac{V''(n)n}{V'(n)}\right)^{-1} \frac{\delta^{a}}{(\sigma^{a})^{2}}$$

Remarks:

■ this has a flavor of mean-variance portfolio choices: $-\frac{V''(n)n}{V'(n)}$ is the relative risk aversion, δ^a is the excess return and $(\sigma^a)^2$ is the risky asset's variance

Solving HJB for Constant Return Case

- We could now plug optimal choices and solve the resulting ODE numerically
- Instead for this problem: guess functional form and solve analytically
- Guess: $V(n) = \frac{u(\omega n)}{\rho}$ with some constant $\omega > 0$. Plugging into HJB equaiton
 - $\gamma = 1$ (log utility) $\Rightarrow V(n) = \frac{1}{\rho}(\log \omega + \log n)$

$$\log \omega + \log n = \log \rho + \log n - 1 + \frac{1}{\rho} \left(r + \frac{1}{2\gamma} \left(\frac{\delta^{\mathsf{a}}}{\sigma^{\mathsf{a}}} \right)^2 \right)$$

 $\gamma \neq 1$:

$$\rho \frac{(\omega n)^{1-\gamma}}{\rho} = \gamma \rho^{1/\gamma} \omega^{1-1/\gamma} \frac{(\omega n)^{1-\gamma}}{\rho} + (1-\gamma) \left(r + \frac{1}{2\gamma} \left(\frac{\delta^{a}}{\sigma^{a}}\right)\right) \frac{(\omega n)^{1-\gamma}}{\rho}$$

In both cases, n cancels out, thus verifying our guess (we can then solve for ω)

Full Solution for Constant Return Case

Value function:

$$V(n) = \frac{u(\omega n)}{\rho}$$

Optimal choices:

$$\begin{cases} c(n) = \rho^{1/\gamma} \omega^{1-1/\gamma} n \\ 1 - \theta(n) = \frac{1}{\gamma} \frac{\delta^{a}}{(\sigma^{a})^{2}} \end{cases}$$

■ Constant ω in the value function (for $\gamma \neq 1$):

$$\omega = \rho \left(1 + \frac{\gamma - 1}{\gamma} \frac{1}{\rho} \left(r - \rho + \frac{1}{2\gamma} \left(\frac{\delta^{\mathsf{a}}}{\sigma^{\mathsf{a}}} \right)^2 \right) \right)^{\frac{\gamma}{\gamma - 1}}$$

Discussion of Optimal Consumption Choice

$$c_t/n_t = \rho^{1/\gamma} \omega_t^{1-1/\gamma}$$

- Reaction of c/n to investment opportunities ω depends on EIS $\psi := 1/\gamma$:
 - $\psi < 1$ better investment opportunities \Rightarrow consumption \uparrow , savings \downarrow
 - $\psi > 1$ better investment opportunities \Rightarrow consumption \downarrow , savings \uparrow
 - $\psi = 1$ consumption-wealth ratio independent of investment opportunities
- Why this ambiguous relationship? Two effects:
 - income effect:
 - lacktriangleright improved investment opportunities ω make investor effectively richer
 - investor responds by increasing consumption in all periods
 - 2 substitution effect:
 - \blacksquare improved investment opportunities ω makes saving more attractive
 - to benefit from them, investor reduces consumption now to get more consumption later
 - $\psi < 1$ substitution effect weak (consumption smoothing desire), income effect dominates
 - $\psi>1$ investor less averse against variation in consumption, substitution effect dominates

Discussion of Optimal Consumption Choice

• Combining the previous equation and dropping dt and time subscripts:

$$\begin{split} \rho V(\mathbf{n}, \eta) &= \max_{c} \left(u(c) - \partial_{\mathbf{n}} V(\mathbf{n}, \eta) c \right) \\ &+ \max_{\theta} \bigg\{ \partial_{\mathbf{n}} V(\mathbf{n}, \eta) n(r(\eta) + (1 - \theta) \delta^{\mathbf{a}}(\eta)) \\ &+ \left(\frac{1}{2} \partial_{\mathbf{n}\mathbf{n}} V(\mathbf{n}, \eta) n(1 - \theta) \sigma^{\mathbf{a}}(\eta) + \partial_{\eta \mathbf{n}} V(\mathbf{n}, \eta) \sigma_{\eta}(\eta) \right) n(1 - \theta) \sigma^{\mathbf{a}}(\eta) \bigg\} \\ &+ \partial_{\eta} V(\mathbf{n}, \eta) \mu_{\eta}(\eta) + \frac{1}{2} \partial_{\eta \eta} V(\mathbf{n}, \eta) (\sigma_{\eta}(\eta))^{2} \end{split}$$

Solution method 1: solve this two-dimensional PDE for V numerically Solution method 2: guess $V(n,\eta)=\frac{u(\omega(\eta)n)}{\rho}$ and reduce to one-dimensional ODE for $\omega(\eta)$

Time-Varying Returns: Optimal Consumption and Portfolio

Optimal consumption choice (after using guess from previous slide)

$$c(n, \eta) = \rho^{1/\gamma} (\omega(\eta))^{1-1/\gamma} n$$

- \blacksquare as for constant returns, but now investment opportunities $\omega(\eta)$ are state-dependent
- Optimal portfolio choice (after using guess from previous slide)

$$1 - \theta(n, \eta) = \underbrace{\frac{1}{\gamma} \frac{\delta^{\mathsf{a}}(\eta)}{(\sigma^{\mathsf{a}}(\eta))^{2}}}_{\mathsf{myopic demand}} + \underbrace{\frac{1 - \gamma}{\gamma} \frac{\frac{\omega(\eta)}{\omega(\eta)} \sigma_{\eta}(\eta) \sigma^{\mathsf{a}}(\eta)}{(\sigma^{\mathsf{a}}(\eta))^{2}}}_{\mathsf{hedging demand}}$$

additional hedging demand term that depends on covariance $\sigma^\omega \sigma^a$ of investment opportunities with asset return

Time-Varying Returns: Hedging Demand

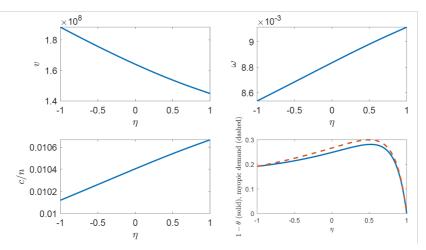
$$1 - \theta(\textit{n}, \eta) = \underbrace{\frac{1}{\gamma} \frac{\delta^{\textit{a}}(\eta)}{(\sigma^{\textit{a}}(\eta))^2}}_{\text{myopic demand}} + \underbrace{\frac{1 - \gamma}{\gamma} \frac{\frac{\omega'(\eta)}{\omega(\eta)} \sigma_{\eta}(\eta) \sigma^{\textit{a}}(\eta)}{(\sigma^{\textit{a}}(\eta))^2}}_{\text{hedging demand}}$$

- Why should variation in future investment opportunities be relevant for portfolio choice? Two opposing motives:
 - If investment opportunities are good, it is valuable to have any resources available
 - invest in assets that pay off in states in which investment opportunities are good
 - If investment opportunities are bad, that's bad time for investor and additional wealth is valuable
 - invest in assets that pay off in states in which investment opportunities are bad
- Which of the two dominates depends on γ :
 - a $\gamma <$ 1, investor not very risk averse, prefer to have resources when it is profitable to invest
 - $\gamma > 1$, investor sufficiently risk averse to want to hedge against bad times
 - $\gamma = 1$, the two forces cancel out, investor acts myopically
- Remark: a very conservative investor $(\gamma \to \infty)$ only cares about the hedging component

Determining Investment Opportunities

- When substituting optimal choices into HJB, n cancels out, and we get ODE for $\omega(\eta)$
- One can solve this numerically for the function $\omega(\eta)$
- Details will be provided in Lecture 06 (later)
 - (E.g., solve equivalently for $v(\eta) := (\omega(\eta))^{1-\gamma}$ which is a "more linear" (less kinky) ODE.)

Example Solution



Parameters:

$$\rho = 0.02, \gamma = 5, \phi = 0.2, \sigma = 0.1, r^0 = 0.02, r^1 = 0.01, \delta^0 = 0.3, \delta^1 = 0.03, \sigma^0 = 0.15$$

Stochastic Control Methods in Continuous Time

- Hamilton-Jacobi-Bellman (HJB) Equation
 - Continuous-time version of Bellman Equation
 - lacktriangle Requires Markovian formulation with explicit definition of state space: $V(\cdot)$ vs $V_t(\cdot)$
 - Solve (Postulate) value function $V(n, \eta)$
- Stochastic Maximum Principle
 - Conditions that characterize path of optimal solution (as opposed to whole value function)
 - Closer to discrete-time Euler equations than Bellman equation
 - Does not require Markovian problem structure
 - Solve (Postulate) co-state variable ξ_t^i
- Martingale Method
 - (Very general) shortcut for portfolio choice problem
 - Yields interpretable equations (effectively linear factor pricing equations)
 - But: tailored to specific problems (portfolio choice), non-trivial to apply elsewhere
 - Postulate SDF process: $\mathrm{d}\xi_t^i/\xi_t^i$

Method 2: Stochastic Maximum Principle

Define the Hamiltonian

$$\begin{split} H_t^i &= \mathrm{e}^{-\rho t} \frac{(c_t^i)^{1-\gamma}}{1-\gamma} + \xi_t^i n_t^i \mu_t^{n^i} + \sigma_{\xi^i,t} n_t^i \sigma_t^{n^i} \\ &= \underbrace{\mathrm{e}^{-\rho t} \frac{(c_t^i)^{1-\gamma}}{1-\gamma} + \xi_t^i \left[-c_t^i + n_t^i (1-\theta_t^i) (r_t + \delta_t^a) + n_t^i \theta_t^i r_t + \frac{\sigma_{\xi^i,t}}{\xi_t^i} n_t^i (1-\theta_t^i) \sigma_t^{r^a} \right]}_{=: H(t,n_t^i,c_t^i,\theta_t^i,\xi_t^i,\sigma_{\xi^i,t})} \end{split}$$

- ξ_t^i is called the costate of the system
 - \blacksquare it plays the role of a dynamic Lagrange multiplier on the state evolution for n_t^i
 - $\sigma_{\xi^i,t}$ is the costate volatility $(dZ_t$ -loading of ξ^i_t)
- Stochastic Maximum Principle: under certain (convexity) conditions, the optimal choices c_t^i , θ_t^i maximize the Hamiltonian and the costate ξ_t^i satisfies the BSDE

$$\mathrm{d}\xi_t^i = -\partial_n H(t, n_t^i, c_t^i, \theta_t^i, \xi_t^i, \sigma_{\xi^i, t}) \mathrm{d}t + \sigma_{\xi^i, t} \mathrm{d}Z_t$$

Note: $\sigma_{\xi^i,t}$ is part of the solution

Maximum Principle - Step 1: Maximizing the Hamiltonian

■ Hamiltonian (from last slide):

$$H_t^i = e^{-\rho t} \frac{(c_t^i)^{1-\gamma}}{1-\gamma} + \xi_t^i \left[-c_t^i + n_t^i (1-\theta_t^i)(r_t + \delta_t^a) + n_t^i \theta_t^i r_t + \frac{\sigma_{\xi^i,t}}{\xi_t^i} n_t^i (1-\theta_t^i) \sigma_t^{r^a} \right]$$

■ FOC w.r.t c_t^i, θ_t^i

$$e^{-\rho t} (c_t^i)^{-\gamma} = \xi_t^i$$
$$\delta_t^a = -\frac{\sigma_{\xi^i, t}}{\xi_t^i} \sigma_t^{r^a}$$

Let's define $\varsigma_t^i := -\frac{\sigma_{\xi^i,t}}{\xi_t^i}$, then second condition becomes

$$\delta_t^{\mathsf{a}} = \varsigma_t^{\mathsf{i}} \sigma_t^{\mathsf{r}^{\mathsf{a}}}$$

- interpretation: ς_t^i is the (shadow) price of risk
- lacktriangle will become clearer in martingale method below: costate ξ_t^i coincides with the SDF

Maximum Principle - Step 2: Costate Equation

Costate equation (additional FOC)

$$\mathrm{d}\xi_t^i = -\frac{\partial H_t^i}{\partial n_t^i} \mathrm{d}t - \varsigma_t^i \xi_t^i \mathrm{d}Z_t$$

■ The drift of ξ_t^i is given by:

$$\mu_{\xi^{i},t} = -\frac{\partial H_{t}}{\partial n_{t}^{i}} = -\xi_{t}^{i} \left[(1 - \theta_{t}^{i})(r_{t} + \delta_{t}^{a}) + \theta_{t}^{i}r_{t} - \varsigma_{t}^{i}(1 - \theta_{t}^{i})\sigma_{t}^{r^{a}} \right]$$

$$= -\xi_{t}^{i} \left[r_{t} + (1 - \theta_{t}^{i}) \underbrace{(\delta_{t}^{a} - \varsigma_{t}^{i}\sigma_{t}^{r^{a}})}_{=0 \text{ by portf. choice}} \right]$$

Hence,

$$\frac{\mathrm{d}\xi_t^i}{\xi_t^i} = -r_t \mathrm{d}t - \varsigma_t^i \mathrm{d}Z_t$$

Equivalent but shorter:

$$\frac{\mathbb{E}_t[\mathrm{d}\xi_t^i]}{\xi_t^i} = -r_t \mathrm{d}t$$

Remark:

- this is essentially the consumption Euler equation
- using consumption FOC: $\frac{\mathbb{E}_t[d((c_t^i)^{-\gamma})]}{(c_t^i)^{-\gamma}dt} = \rho r_t$

Solving the Costate Equation I: Transform into PDE

- Costate equation plays similar role as stochastic version of HJB
- We can transform it into a PDE by applying Ito to $\xi_t^i = \xi(t, n_t^i, \eta_t)$:

$$\begin{split} 0 &= r(\eta)\xi(t,n,\eta) + \partial_t \xi(t,n,\eta) \\ &+ \partial_n \xi(t,n,\eta) \left(-c^*(t,n,\eta;\xi) + n \left(r(\eta) + (1-\theta^*(t,n,\eta;\xi)\delta^a(\eta)) \right) \right. \\ &+ \partial_\eta \xi(t,n,\eta) \mu_\eta(\eta) + \frac{1}{2} \partial_{nn} \xi(t,n,\eta) n^2 (1-\theta^*(t,n,\eta;\xi))^2 (\sigma^a(\eta))^2 \\ &+ \partial_{\eta n} \xi(t,n,\eta) \sigma_\eta(\eta) n (1-\theta^*(t,n,\eta;\xi)) \sigma^a(\eta) + \frac{1}{2} \partial_{\eta \eta} \xi(t,n,\eta) (\sigma_\eta(\eta))^2 \end{split}$$

where $c^*(t, n, \eta; \xi)$, $\theta^*(t, n, \eta; \xi)$ are the optimal choices that maximize H_t^i (which depend on ξ_t^i)

- **Link to HJB**: we obtain same PDE if we take derivative in HJB with respect to n and substitute $\xi(t, n, \eta) = e^{-\rho t} V(n, \eta)$
 - reason: ξ_t^i acts like Lagrange multiplier on the net worth evolution
 - envelope theorem: ξ_t^i is marginal (time-zero) utility benefit of giving agent i an additional unit of (time t) wealth

Example: HJB-Costate Eq. Connection without η -State

■ Suppose returns are constant, value function V(n) satisfies HJB

$$\rho V(n) = u(c^*) + V'(n) \left(-c + n(r + (1 - \theta^*)\delta^a) \right) + \frac{1}{2}V''(n)n^2((1 - \theta^*)\sigma^a)^2$$

■ Take derivative w.r.t. n and multiply by $e^{-\rho t}$ (can ignore dependence of c^* and θ^* on n by envelope theorem)

$$\rho e^{-\rho t} V'(n) = e^{-\rho t} V''(n) \left(-c^* + n(r + (1 - \theta^*)\delta^a) \right) + \frac{1}{2} e^{-\rho t} V'''(n) n^2 ((1 - \theta^*)\sigma^a)^2 + e^{-\rho t} V'(n) \left(r + (1 - \theta^*)\delta^a \right) + e^{-\rho t} V''(n) n ((1 - \theta^*)\sigma^a)^2$$

- Substitute $\xi(t, n) := e^{-\rho t} V'(n)$ and use the following facts:

 - $\varsigma(t,n) = -\frac{\partial_n \xi(t,n)}{\xi(t,n)} n(1-\theta^*) \sigma^a = -\frac{\partial_n V''(n)}{V'(n)} n(1-\theta^*) \sigma^a$ (by Ito)
 - $\delta^a \varsigma(t, n)(1 \theta^*)\sigma^a = 0$ (by optimal portfolio choice)

$$0 = r\xi(t, n) + \partial_t \xi(t, n) + \partial_n \xi(t, n) \left(-c^* + n(r + (1 - \theta^*)\delta^a) \right) + \frac{1}{2} \partial_{nn} \xi(t, n) n^2 ((1 - \theta^*)\sigma^a)^2$$

■ This is the same PDE as on previous slide

Solving the Costate Equation II: Guess and Verify

- We can also keep the stochastic costate equation and verify a guess
- E.g. in constant returns case, $V(n) = \frac{u(\omega n)}{\rho}$ suggests guess $\xi_t = e^{-\rho t} \frac{\omega}{\rho} u'(\omega n_t)$
- This guess implies:
 - from first-order conditions:

$$c_t^i = \rho^{1/\gamma} \omega^{1-1/\gamma} n_t^i$$

$$1 - \theta = \frac{1}{\gamma} \frac{\delta^{\mathbf{a}}}{(\sigma^{\mathbf{a}})^2}$$

by Ito:

$$\frac{d\xi_t}{\xi_t} = -\rho dt + \frac{dn_t^{-\gamma}}{n_t^{-\gamma}} = \left(-\rho - \gamma \mu_t^n + \frac{\gamma(\gamma+1)}{2}(\sigma_t^n)^2\right) dt - \gamma \sigma_t^n dZ_t$$

- Substituting drift into costate equation:
 - case $\gamma = 1$: verifies guess (ω drops out)
 - **a** case $\gamma \neq 1$: yields algebraic equation for ω (same as in HJB approach)

Stochastic Control Methods in Continuous Time

- Hamilton-Jacobi-Bellman (HJB) Equation
 - Continuous-time version of Bellman Equation
 - lacktriangle Requires Markovian formulation with explicit definition of state space: $V(\cdot)$ vs $V_t(\cdot)$
 - Solve (Postulate) value function $V(n, \eta)$
- Stochastic Maximum Principle
 - Conditions that characterize path of optimal solution (as opposed to whole value function)
 - Closer to discrete-time Euler equations than Bellman equation
 - Does not require Markovian problem structure
 - Solve (Postulate) co-state variable ξ_t^i

Martingale Method

- (Very general) shortcut for portfolio choice problem
- Yields interpretable equations (effectively linear factor pricing equations)
- But: tailored to specific problems (portfolio choice), non-trivial to apply elsewhere
- Postulate SDF process: $\mathrm{d}\xi_t^i/\xi_t^i$

Method 3: Martingale Approach – Discrete Time

$$\max_{\{c_t, \boldsymbol{\theta}_t\}_{\tau=t}^T} \mathbb{E}_t \left[\sum_{\tau=t}^T \frac{1}{(1+\rho)^{\tau-t}} u(c_\tau) \right]$$
s.t. $\boldsymbol{\theta}_t \boldsymbol{\rho}_t = \boldsymbol{\theta}_{t-1}(\boldsymbol{\rho}_t + \boldsymbol{d}_t) - c_t$, for all t

FOC w.r.t θ_t at t

$$\xi_t p_t = \mathbb{E} \left[\xi_{t+1} (p_{t+1} + d_{t+1}) \right]$$

where $\xi_t = \frac{u'(c_t)}{(1+\rho)^t}$ is the (multi-period) stochastic discount factor (SDF)

- If projected on asset span, then pricing kernel ξ_t^*
- Note: $MRS_{t,\tau} = \xi_{t+\tau}/\xi_t$
- Consider portfolio, where one reinvests dividend d
 - Portfolio is a self-financing trading strategy, A, with price, p_t^A

$$\xi_t p_t^A = \mathbb{E}_t \left[\xi_{t+1} p_{t+1}^A \right]$$

 $\xi_t p_t^A$ is a martingale.

Method 3: Martingale Approach – Cts. Time

$$\begin{split} \max_{\{c_t, \boldsymbol{\theta}_t\}_{t=0}^{\infty}} \mathbb{E}_t \left[\int_0^{\infty} \mathrm{e}^{-\rho t} u(c_t) dt \right] \\ s.t. \quad \frac{\mathrm{d} n_t}{n_t} &= -\frac{c_t}{n_t} \mathrm{d} t + \sum_j \theta_t^j \mathrm{d} r_t^j + \text{labor income/endowment/taxes} \\ n_0 \text{ given} \end{split}$$

- Portfolio Choice: Martingale Approach
 - Let x_t^A be the value of a "self-financing trading strategy" (reinvest dividends)
- Theorem: $\xi_t x_t^A$ follows a martingale, i.e., drift = 0
 - Let $\frac{dx_t^A}{x_t^A} = \mu_t^A dt + \sigma_t^A dZ_t$, postulate $\frac{d\xi_t^i}{\xi_t^i} = \underbrace{\mu_t^{\xi^i}}_{-r_t^i} dt + \underbrace{\sigma_t^{\xi^i}}_{-\varsigma_t^i} dZ_t$. Then by product

rule:

$$\frac{d(\xi_t^i x_t^A)}{\xi_t^i x_t^A} = \underbrace{\left(-r_t^i + \mu_t^A - \varsigma_t^i \sigma_t^A\right)}_{=0} \mathrm{d}t + \text{volatility term} \Rightarrow \boxed{\mu_t^A = r_t^i + \varsigma_t^i \sigma_t^A}$$

- For risk-free asset, i.e., $\sigma_t^A = 0$, $r_t^f = r_t^i$
- Excess expected return to risky asset B: $\mu_t^A \mu_t^B = \varsigma_t^i (\sigma_t^A \sigma_t^B)$

Remark: What is ξ_t for CRRA utility

- $\xi_t \text{ is } e^{-\rho t}u'(c_t) = e^{-\rho t}c_t^{-\gamma}. \text{ [Note: } dc_t = \mu_t^c c_t \mathrm{d}t + \sigma_t^c c_t \mathrm{d}Z_t]$
- Apply Itô's Lemma:
 - Note: $u'' = -\gamma c^{-\gamma-1}$, $u''' = \gamma(\gamma+1)c^{-\gamma-2}$

$$\frac{\mathrm{d}\xi_t}{\xi_t} = -\underbrace{\left(\rho + \gamma\mu_t^c - \frac{1}{2}\gamma(\gamma + 1)(\sigma_t^c)^2\right)}_{f} \mathrm{d}t - \underbrace{\gamma\sigma_t^c}_{\varsigma_t} \mathrm{d}Z_t$$

- Risk free rate r_t^f
- Price of risk ς_t
- lacktriangle Aside: Epstein-Zin(-Duffie) preferences with EIS ψ

$$r^f = \rho + \psi^{-1} \mu_t^c - \frac{1}{2} \gamma (\psi^{-1} + 1) (\sigma_t^c)^2$$

Method 3: Martingale Approach - Cts. Time

- Proof 1: Stochastic Maximum Principle (see Handbook chapter)
- Proof 2: Intuition (calculus of variation)
 Remove from the optimum Δ at t_1 and add back at t_2

$$V(n,\omega,t) = \max_{\{\iota_s,\boldsymbol{\theta}_s,c_t\}_{s=t}^{\infty}} \mathbb{E}_t \left[\int_0^{\infty} e^{-\rho(s-t)} u(c_s) ds | \omega_t = \omega \right]$$

 \blacksquare s.t. $n_t = n$

$$e^{-\rho t_1} \frac{\partial V}{\partial n} (n_{t_1}^*, x_{t_1}, t_1) x_{t_1}^A = \mathbb{E} \left[e^{-\rho t_2} \frac{\partial V}{\partial n} (n_{t_2}^*, x_{t_2}, t_2) x_{t_2}^A \right]$$

See Lecture notes and Merkel's handout

Stochastic Control Methods in Continuous Time

- Hamilton-Jacobi-Bellman (HJB) Equation
 - Continuous-time version of Bellman Equation
 - lacktriangle Requires Markovian formulation with explicit definition of state space: $V(\cdot)$ vs $V_t(\cdot)$
 - Solve (Postulate) value function $V(n, \eta)$
- Stochastic Maximum Principle
 - Conditions that characterize path of optimal solution (as opposed to whole value function)
 - Closer to discrete-time Euler equations than Bellman equation
 - Does not require Markovian problem structure
 - Solve (Postulate) co-state variable ξ_t^i
- Martingale Method
 - (Very general) shortcut for portfolio choice problem
 - Yields interpretable equations (effectively linear factor pricing equations)
 - But: tailored to specific problems (portfolio choice), non-trivial to apply elsewhere
 - Postulate SDF process: $\mathrm{d}\xi_t^i/\xi_t^i$

Conclusion

- Basic Itô Calculus
- Single-Agent Consumption-Portfolio Choice
- Stochastic Control Methods in Continuous Time
 - Hamilton-Jacobi-Bellman (HJB) Equation
 - Stochastic Maximum Principle (Pontryagin)
 - Martingale Method