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Overview of Lecture 02

m Basic 1t6 Calculus

m Single-Agent Consumption-Portfolio Choice
m Stochastic Control Methods in Continuous Time

m Hamilton-Jacobi-Bellman (HJB) Equation
m Stochastic Maximum Principle (Pontryagin)
m Martingale Method
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Brownian Motion d/

m Brownian Motion as a binomial tree over At.
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Notations for 1td6’s Process

m Arithmetic Itd's Process: dX; = ux (dt + ox dZ;

m X in the subscript of i and o
B ux. and ox; (can be) time varying

m Geometric Itd's Process: dX; = i X dt + o XdZ;

m X in the superscript of p and o.
m Example: Stock goes up 32% or down 32% over a year (256 trading days):

m Note: This is not a general convention, but used during this course.
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Ito Processes: Characterization, Skewness over At

m |to processes ... fully characterized by drift and volatility
dX: = p( X, t)dt + o(Xe, t)dZ;
m Arithmetic Itd's Process: dX; = px dt + ox,:dZ;
m Geometric It6's Process: dX; = uf X.dt + o X;dZ;
m Characterization for full volatility dynamics on Prob.-space

m Discrete time: Probability loading on states
conditional expectations E[X]| Y] difficult to handle
m Cts. time Loading on a Brownian Motion dZ; captured by o

m Normal distribution for dt, yet with skewed distribution for At > 0

n

m If o} is time-varying
m E.g. from normal-dt to log-normal-At and vice versa (geometric dX;.)
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Basics of 1t6’s Calculus
m Ité's Lemma in geometric notation:
1 2
df (X) = {f’(Xt)qut + 5f”(x) <a§<xt) ] dt + f'(Xp)of X ¢dZ;

m Example: SDF's volatility for CRRA utility: u(c) = Cl:;l, u'(c)=c

-

_ —ptSt § _ c

§e=e CT,YZN'&——WG
0

m t6 product rule: (stock price * exchange rate)

d(X:Y;
M — (,uff +,u;/ + crfa,_}/)dt—i- (Ui( +0'1_}/)dzt
XeYs
m O ratio rule:
d(Xt/Yt)

) = o 0N+ o =i
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Overview

m Basic 1t6 Calculus

m Single-Agent Consumption-Portfolio Choice
m Stochastic Control Methods in Continuous Time

m Hamilton-Jacobi-Bellman (HJB) Equation
m Stochastic Maximum Principle (Pontryagin)
m Martingale Method
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Single-Agent Consumption-Portfolio Choice

m Choose consumption {c:}?2 and portfolio weights to {6:}7°, to maximize:

cl-v—1

E [Joo e_’”u(ct)dt] ,  with u(c) = 1—~

0
m Subject to:
m Net worth evolution

Vt>0: dnt = —Ctdt + nt[ﬂtrtdt + (1 - Ot)drta]

m A solvency constraint: Vi > 0,n; > 0.
alternatively, a “no Ponzi condition” leads to identical solution
m Beliefs about:

m r; risk-free rate
m dr? risky asset return process with risk premium 62: dr? = (r; + §2)dt + 02dZ;
m Take prices/returns as given
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State Space

Suppose returns are a function of state variable 7;:

= r(nt), 5? = 5a<77t)> U? = Ua(nt)

71 evolves according to a diffusion process:

dne = pl(ne)nedt + of (ne)nedZy

® with initial state ng given

Then decision problem has two state variables:

m n; controlled state
m 7); external state

For each initial state (ng,n0) we have a separate decision problem
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Example: Functional Forms

®
g
= =
E =
< S
_¢) 0
1 05 0 05 1 1 05 0 05 1

m 7-evolution (implies n; € (—1,1))

W =y = —¢n,  oy(n) =o(l—1?)
m Asset returns:
0

r(n) =r+rln, 6%(n)=0"—d'n, o°(n) =0’ —o'y

m With parameters: r% r! 69 61,060 61 >0
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Stochastic Control Methods in Continuous Time

= Hamilton-Jacobi-Bellman (HJB) Equation
m Continuous-time version of Bellman Equation
m Requires Markovian formulation w explicit state space defin.: V() vs V;(-)
m Solve (Postulate) value function V(n,n)
m Stochastic Maximum Principle
m Conditions that characterize path of optimal solution
(as opposed to whole value function)
m Closer to discrete-time Euler equations than Bellman equation
m Does not require Markovian problem structure
m Solve (Postulate) co-state variable ¢/
m Martingale Method
(Very general) shortcut for portfolio choice problem
Yields interpretable equations (effectively linear factor pricing equations)

But: tailored to specific problems (portfolio choice), non-trivial to apply elsewhere
Postulate SDF process: d¢/€l
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Method 1: Hamilton-Jacobi-Bellman (HJB) Equation

m Stochastic version of single-agent consumption-portfolio choice

m HJB differential equation
m Special cases:

m Constant returns
m Time-varying returns
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Value Function and Principle of Optimality

m Notation:
m A(n,n): set of admissible choices {c;,0:} , given the initial conditions:

No =n,no =1
m A7(n,n): set of policies {c;,0:}/_, over [0, T] that have admissible extensions to
[07 OO), {Cta 91’}?):0 = A(n7 77)

m Define the value function of the decision problem:

0
max )Et [J e_ptu(ct)dt]

4 =
(1) = P = | g

m It is easy to see that V satisfies the Bellman principle of optimality: for all T > 0

-
V(nn) = max " n)Et [L e Pu(c)dt + epTV(nT,n-,-)]

{Gt,ct}LocAT

(where nt depends on the choice {0, ct};’—zo over [0, T].)
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A Stochastic Version of the HIB Equation: Derivation

m With V; := V/(n¢,n:), can write the principle of optimality as:

-
0= max E; [f e tu(c,)dt + e PTVvy — Vo]
(n07770) 0

{0r,ce}]_gc AT

m By integrating by part:

T

-
e TV —Vy = —pf e PtV,dt +f e PtdV;
0 0
m Combine with previous equation:
T T
0= max E. [J e "H(u(ct) — pVp)dt + f e_ptht]
{9t7Ct}Z—:0CAT("07770) 0 0

m Divide by T, and take limit T | O:

Literally this yields the following equation only for t = 0, but we can shift time to any intitial time due to Markovian

pVidt = max{u(c;)dt + E[dV:]}

ct,0t
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A Stochastic Version of the HJB Equation: Interpretation

m Stochastic version of HJB:

pVidt = maex{u(ct)dt + E[dV4]}

Ct,0t

m = implicit backward stochastic differential equation (BSDE) for value process V;
®m What does it mean?

m Stochastic: equation for the stochastic process V; is not a deterministic function

m Differential equation: relates time differential dV; to process value V; (& other
variables)

m Backward: forward-looking equation that must be solved backward in time,
determines only expected time differential E[dV;], volatility process is part of the
solution

m |mplicit: E[dV;] is not explicitly solved for, instead part of non-linear expression on
right-hand side (due to max operator)
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Digression: Alternative Derivation: Time Approximation

m Usual way of writing discrete time Bellman Equation (5 := e™?)

V(ng,ne) = m%x{u(ct) + BE[V (nes1,mer1)]}

Ct,0t

m More generally, with generic period length At > 0 (3 = e~ PAt):

V(ne,ne) = man{U(Ct)At + BEV (nerae nevae)]}

Ct,0t
Subtract 5V (n¢, n¢) from both sides:

1_
A—tﬁV(nt,nt)At = T%X{U(Ct)At + BE[V (neraene+ae) — V(ng,ne)]}

Taking the limit At — 0 yields again:

pV(ng, ne)dt = max{u(ce)dt + E¢[dV (ne,m:)]}

ct,0t
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Method 1: Hamilton-Jacobi-Bellman (HJB) Equation

m Stochastic version of single-agent consumption-portfolio choice
m HJB differential equation

m Special cases:

m Constant returns
m Time-varying returns
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The (Deterministic) HJB Equation

m Next step: transform stochastic version of HJB into a (non-stochastic)
differential equation

m General idea: use It6's lemma to express E[dV}] in terms of derivatives of value
function V4
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Poll: The (Deterministic) HJB Equation

m Which of the following is the correct one? [Recall the definition Vi = V(n¢, n;)]
] BLVA = (00V (im0, (et )
[b] E[dV:] = <3nV(”t?ﬂt)ﬂn,t + Oy V (e, me) fa, ¢
(OnnV (1, nt)a,z,,t + Opn V (n¢, nt)afm) )dt
[c]  E[dVi] = 0nV(ne,me)ptn,e + OnV (e, 100 oo
(é’,,,,V(nt, Ne)05.¢ + Ony V(e 1e)02 ¢ + OynV(ne, nt)an)tan,t>> dt
[d] E[dV:] =(0nV(ne,ne)ptn,e + OnV (0t me) iy ¢

(a,,,, V(nt, 7]t)(7,27,t + 6777] V(nt, 'f]t)0'7277t) + ann V(nt, 77t)0'7])t0'n7t> dt
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The (Deterministic) HJB Equation

m Next step: transform stochastic version of HJB into a (non-stochastic)
differential equation
m General idea: use It6's lemma to express E[dV;] in terms of derivatives of value

function V;
Here, Vi = V(n¢, 1), so we can write:

pVidt = max( + 0V (ne,me) it + OnV (e, Me) fag e

(ct)
Ct:
1
E (&’,m V(nt, T]t) n t + é’,m V(nt, nt) ) + 877,, \/(I'It7 77t)0'7] tOn t) dt
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The (Deterministic) HJB Equation

m Next step: transform stochastic version of HJB into a (non-stochastic)
differential equation
m General idea: use It6's lemma to express E[dV;] in terms of derivatives of value

function V;
Here, Vi = V(n¢, 1), so we can write:

+ 0nV (N, M) fin,e + OnV (N, M) fin

Ct:

pVidt = max(

(ct)
1
- (&’,m V(nt, nt) n t + 67717 V(nt, nt) ) + &’,7,, \/(nt7 77t)0'7],t0'n t dt
2

m For this problem, drifts and volatilities are:

Pt = —Ct + ne [r(ne) + (1 —0:)0%(ne)] fin,e = (1)
one = nt(1—0:)0(ne) Ont = Un(”t)
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The (Deterministic) HJB Equation

m Combining the previous equation and dropping dt and time subscripts:
pV(n,n) =max(u(c) = dnV(n,n)c)
c
+ max{ 00V (. m)n(r(n) + (1= 6)0°(0)
1
(30w Vinmn(a = 0)a1) + 230V (n. 1)) ) 1~ D)%) |
2

8V () + 320V (0, 0) ()

This is a nonlinear partial differential equation (PDE) for V(n,n)
Note: nonlinearity enters through the max operator
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Method 1: Hamilton-Jacobi-Bellman (HJB) Equation

m Stochastic version of single-agent consumption-portfolio choice

m HJB differential equation
m Special cases:

m Constant returns
m Time-varying returns
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Special Case: Constant Returns

Lets first assume that returns are constant: r; = r, 0 = 6%,02 = o?

Can then drop 1 from the problem and write the HJB as:

c

pV(n) = max (u(c) — V'(n)c) + max <V’(n)n(r +(1-6)5%) + %V”(n)nz((l - 9)03)2)

To solve this equation, first solve optimizations:
m optimal consumption choice: marginal utility of consumption = marginal value of wealth

u'(c) = V'(n)
m optimal portfolio choice: Merton portfolio weight

o _V”(n)n “1oga
' ‘”( w(n)) (o)
Remarks:

m this has a flavor of mean-variance portfolio choices: —% is the relative risk

aversion, 0 is the excess return and (0)? is the risky asset’s variance
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Solving HJB for Constant Return Case

m We could now plug optimal choices and solve the resulting ODE numerically
m Instead for this problem: guess functional form and solve analytically
u(wn)

m Guess: V(n) = = with some constant w > 0. Plugging into HJB equaiton

= v =1 (log utility) = V(n) = %(Iogw + log n)

1 1 (6%\°
logw +logn=logp+logn—1+—|r+—|(—
P

2y \ o2
my#L
1—v 1—v 1 o2 1—v
PCL R CT) i (1-7) (r 2 (_a)> -
p p 2y \o p

In both cases, n cancels out, thus verifying our guess (we can then solve for w)
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Full Solution for Constant Return Case

m Value function:

m Optimal choices:

C(n) = pl/'ywl_l/’}’n
1 4°
~ 2

PO =S e

m Constant w in the value function (for v # 1):

0
v—11 1 /8\?\ )"
w=p 1+T; r—p—i—z ;

Markus.Economicus@gmail.com Macrofinance: St Summer, 2025

25 / 45



Discussion of Optimal Consumption Choice

1-1
Ct/nt _ pl/'ywt /v

m Reaction of ¢/n to investment opportunities w depends on EIS ¢ := 1/~:
H ¢ < 1 better investment opportunities = consumption 1, savings |
H ) > 1 better investment opportunities = consumption |, savings 1
[l ©» = 1 consumption-wealth ratio independent of investment opportunities
m Why this ambiguous relationship? Two effects:
income effect:
m improved investment opportunities w make investor effectively richer
m investor responds by increasing consumption in all periods
substitution effect:
m improved investment opportunities w makes saving more attractive

m to benefit from them, investor reduces consumption now to get more
consumption later

1 < 1 substitution effect weak (consumption smoothing desire), income effect dominates

9 > 1 investor less averse against variation in consumption, substitution effect dominates
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Discussion of Optimal Consumption Choice

m Combining the previous equation and dropping dt and time subscripts:
pV(n.1m) = max (u(c) — &,V (n.n)c)
+ max{ 20V (o m)n(r(n) + (1= 6)0°(0)
- (GomVinnatt = 0)0%() + 0V (), )) o1 = 0)0%(o) |
0V (1) () + 30V () (0 (1))

2

Solution method 1: solve this two-dimensional PDE for V numerically
Solution method 2: guess V(n,n) = M and reduce to one-dimensional
ODE for w(n)
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Time-Varying Returns: Optimal Consumption and Portfolio

B Optimal consumption choice (after using guess from previous slide)
1 1-1
c(n,n) = p"7 (W)~ 7n
m as for constant returns, but now investment opportunities w(n) are state-dependent

B Optimal portfolio choice (after using guess from previous slide)

1 09(n) 1—~ w(( ))Un(n)a"’(n)
1- G(n, 77) = L (Aa 2 a 2
y(e?(m)? v (a2(n))
myopic‘gemand hedgingvdemand

B additional hedging demand term that depends on covariance 0“¢c? of investment
opportunities with asset return
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Time-Varying Returns: Hedging Demand

1 6%(n) 1—~ w(<7,) on(n)o?(n)
’(n

L0 = S Ty )R
%,_/

myopic demand

hedging demand

m Why should variation in future investment opportunities be relevant for portfolio choice?
Two opposing motives:
If investment opportunities are good, it is valuable to have any resources available
B invest in assets that pay off in states in which investment opportunities are

good
A If investment opportunities are bad, that's bad time for investor and additional

wealth is valuable
B invest in assets that pay off in states in which investment opportunities are

bad

m Which of the two dominates depends on +:
B 7 < 1, investor not very risk averse, prefer to have resources when it is profitable to invest
3 ~ > 1, investor sufficiently risk averse to want to hedge against bad times
v = 1, the two forces cancel out, investor acts myopically

m Remark: a very conservative investor (7 — o0) only cares about the hedging component
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Determining Investment Opportunities

m When substituting optimal choices into HJB, n cancels out, and
we get ODE for w(n)

m One can solve this numerically for the function w(n)

m Details will be provided in Lecture 06 (later)

= (E.g., solve equivalently for v(n) := (w(n))" " which is a “more linear” (less kinky)
ODE.)
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Example Solution

%108 %10
1.8 9
® 16 388
8.6
1.4
-1 05 0 0.5 1 -1 05 0 05 1
n 1_'; n
Z 03 —
0.0106 < == N
< -
g ==
= 0.0104 <02
© g
0.0102 o1
g
0.01 % o
-1 05 0 0.5 1 S 05 0 05 1
| n

Parameters:
p=002y=50¢=020=0.1,r"=0.02,r' =0.01,6° = 0.3,6 = 0.03,6° = 0.15
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Stochastic Control Methods in Continuous Time

m Hamilton-Jacobi-Bellman (HJB) Equation
m Continuous-time version of Bellman Equation
m Requires Markovian formulation with explicit definition of state space: V/(-) vs V;(:)
m Solve (Postulate) value function V/(n,n)
m Stochastic Maximum Principle
m Conditions that characterize path of optimal solution
(as opposed to whole value function)
m Closer to discrete-time Euler equations than Bellman equation
= Does not require Markovian problem structure
= Solve (Postulate) co-state variable ¢/
m Martingale Method
(Very general) shortcut for portfolio choice problem
Yields interpretable equations (effectively linear factor pricing equations)

But: tailored to specific problems (portfolio choice), non-trivial to apply elsewhere
Postulate SDF process: d¢/€l
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Method 2: Stochastic Maximum Principle

m Define the Hamiltonian

Hi—ept(c)l_ +§ + ogi 4N
t = 1~ ttNt git tUt

ny(1— 0o

_e—pt(cz):_kg" _(;"—f—ni(l—ei)(r +5>+n0’
o 1—7v t t t t/\7t t t t

\ —

"

::H(t,n;,cg,eg,gg,og,’t)

m £ is called the costate of the system

m it plays the role of a dynamic Lagrange multiplier on the state evolution for ni
B 0gi, is the costate volatility (dZ;-loading of &)

m Stochastic Maximum Principle: under certain (convexity) conditions, the optimal
choices c{, f; maximize the Hamiltonian and the costate &; satisfies the BSDE

dgil: = _anH(ta n{“? C£> 627 §1’f7 Ugiat)dt + Ugi’tdzt

Note: o, is part of the solution
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Maximum Principle — Step 1: Maximizing the Hamiltonian

m Hamiltonian (from last slide):

. N1—y . ) ) , . a
H; = e_/’t% + & [—C{ + 0y (1 —04)(re + 07) + niOpre + —nt(l — 0o ]

t

m FOC w.r.t c{,&i

e " (c ) ft
it
o7 = et ot

3!

. H o .
m Let's define ] := ——+*, then second condition becomes

t

a__ i_r?
0 = oy

m interpretation: ! is the (shadow) price of risk
m will become clearer in martingale method below: costate &; coincides with the SDF
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Maximum Principle — Step 2: Costate Equation

m Costate equation (additional FOC)

. OHI .
dj = —Stdt — dlgjdz,
m The drift of &l is given by: !
Peip == = = & [(1=00)(re +67) + Oyre —<{(1 — )0 |

= —&ilr+ (10 (07 —diot) ]
——

=0 by portf. choice

m Hence, ”
At ar - daz,
&t
m Equivalent but shorter:
E[d¢{]

_ = —rdt
3 '

Remark:

B this is essentially the consumption Euler equation
Ee[d((c) "] _

B using consumption FOC: EIERET p—
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Solving the Costate Equation I: Transform into PDE

m Costate equation plays similar role as stochastic version of HJB
= We can transform it into a PDE by applying Ito to & = &(t, nf, n;):

0 = r(n)é&(t,n,n) + 0:&(t, n,m)
+ 0n&(t, n,m) (—c*(t,n,m:€) + n(r(n) + (1 —0%(t, n,1;£)d%(n)))

+ 0,&(t, n,m) g (n) + %(%né(t, n,n)n*(1 —0*(t,n,n;€))*(c?(n))?
+ Opn(t, n,m)oy (n)n(L — 0% (t, n,m; €))o(n) + %@mé(t, n,n)(oy(n))?

where c*(t,n,n; €), 0*(t,n,n; £) are the optimal choices that maximize H! (which
depend on &)

m Link to HJB: we obtain same PDE if we take derivative in HJB with respect to
n and substitute £(t, n,n) = e PtV(n,n)

m reason: &! acts like Lagrange multiplier on the net worth evolution
m envelope theorem: &| is marginal (time-zero) utility benefit of giving agent i an
additional unit of (time t) wealth
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Example: HIJB-Costate Eq. Connection without 7-State

m Suppose returns are constant, value function V(n) satisfies HJB
1
pV(n) = u(c*) + V'(n) (—c + n(r + (1 — 6%)§%)) + §V”(n)n2((1 — 0%)0?)?

m Take derivative w.r.t. n and multiply by e~ **
(can ignore dependence of c* and 0* on n by envelope theorem)

pe PtV (n) = e "'V"(n) (—=c* + n(r + (1 — 0%)§%)) + %e*”tV”’(n)n%(l —0*)0%)?
+e PV (n) (r+ (1 —60%)8%) + e P V" (n)n((1 — 6*)0?)?
m Substitute £(t, n) := e ?*V’(n) and use the following facts:

B 0:4(t, n) = —p&(t, n)

B G(t,n) = — 2L 51— ¥)g2 = 2 (1 — *)02 (by Ito)

B 67 —g(t,n)(1 — 6*)o? = 0 (by optimal portfolio choice)
0= ré&(t,n) + 3:£(t,n) + 3p&(t, n) (—c* + n(r+ (1 —0%)0%)) + %ﬁnnﬁ(t, n)n*((1 - 6%)0?)’

m This is the same PDE as on previous slide
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Solving the Costate Equation Il: Guess and Verify

m We can also keep the stochastic costate equation and verify a guess
m E.g. in constant returns case, V(n) = @ suggests guess &; = e*pt%u’(wnt)
m This guess implies:

m from first-order conditions:

i 1)y, 1=1/v i
¢ = p Wt ]

1-60 = 16_2
7 (09)
m by lto:
d dn; n +1), , ,
% = —pdt + n_ty = (—p —YHi + W(WT)(UtV) dt —yo{dZ,
t

m Substituting drift into costate equation:

m case v = 1: verifies guess (w drops out)
m case v # 1: yields algebraic equation for w (same as in HJB approach)
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Stochastic Control Methods in Continuous Time

m Hamilton-Jacobi-Bellman (HJB) Equation

m Continuous-time version of Bellman Equation
m Requires Markovian formulation with explicit definition of state space: V/(-) vs V4(+)
m Solve (Postulate) value function V/(n,n)

m Stochastic Maximum Principle

m Conditions that characterize path of optimal solution
(as opposed to whole value function)
m Closer to discrete-time Euler equations than Bellman equation
m Does not require Markovian problem structure
m Solve (Postulate) co-state variable ¢/

= Martingale Method

m (Very general) shortcut for portfolio choice problem

= Yields interpretable equations (effectively linear factor pricing equations)
m But: tailored to specific problems (portfolio choice), non-trivial to apply
elsewhere

Postulate SDF process: d¢i/¢!
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Method 3: Martingale Approach — Discrete Time

T

1
3, e

T=t

max E;
{Chof};l::t

s.t. otpt = 0t_1(pt + dt) - Ct, for a” t
m FOCw.rt0; att

&ept = E[&er1(pes1 + dey1)]

where & = (u’iﬁ))t is the (multi-period) stochastic discount factor (SDF)

m If projected on asset span, then pricing kernel &
m Note: MRS, ; = &eir /s

m Consider portfolio, where one reinvests dividend d
m Portfolio is a self-financing trading strategy, A, with price, p

&ppt = B¢ [€e41p041 ]

m &pf is a martingale.
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Method 3: Martingale Approach — Cts. Time

max K, [Joo e_ptu(ct)dt]

{Ctaat}?io 0
dnt
s.t. — = dt + 2 GJer —+ labor income/endowment/taxes
ne nt
Il glven

m Portfolio Choice: Martingale Approach
m Let x/ be the value of a “self-financing trading strategy” (reinvest dividends)

m Theorem: &,x{* follows a martingale, i.e., drift = 0

m Let di = pfdt + odZ,, postulate 5,-‘ = ,ufl dt + afl dZ;. Then by product
t N—— N
—r =
rule: B
d(&lx : : :
% = (—r+ Pl — ot )dt + volatility term = | uf = r! 4 ¢lof
tXt - ~
—0 ‘

m For risk-free asset, i.e., 0f =0, rf =1l
m Excess expected return to risky asset B: u! — u8 =¢j(of — oB)

Markus.Economicus@gmail.com \Ete Summer, 2025 41 / 45



Remark: What is & for CRRA utility

m&is e Pt (o) = e P, 7. [Note: dey = pécedt + ofcrdZy]
m Apply Ité's Lemma:
m Note: v/ = —yc 771 u"” =~(y+1)c 772

e
& 2

~~
f
e

1
- (p +yps — (v + 1)(05)2>dt — vof dZ,
——

N

St
m Risk free rate rf
m Price of risk ¢

m Aside: Epstein-Zin(-Duffie) preferences with EIS 1)

1 1 ¢
rf:p+'(/) lut—§7(¢ 1+1)(Ut)2
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Method 3: Martingale Approach - Cts. Time

m Proof 1: Stochastic Maximum Principle (see Handbook chapter)

m Proof 2: Intuition (calculus of variation)
Remove from the optimum A at t; and add back at t

Q0
V(nw,t) = max E; [J e P70 (e ds|wy = w]
0

{Ls,os:ct}?:t
B st ng=n
_ oV A — ov A
e ph%(n;,xtl, t]_)th =E|e ptz%(nzyxtp t2)xt2

m See Lecture notes and Merkel's handout
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Stochastic Control Methods in Continuous Time

m Hamilton-Jacobi-Bellman (HJB) Equation
m Continuous-time version of Bellman Equation
m Requires Markovian formulation with explicit definition of state space: V/(-) vs V;(:)
m Solve (Postulate) value function V/(n,n)
m Stochastic Maximum Principle
m Conditions that characterize path of optimal solution
(as opposed to whole value function)
m Closer to discrete-time Euler equations than Bellman equation
m Does not require Markovian problem structure
m Solve (Postulate) co-state variable ¢/
m Martingale Method
(Very general) shortcut for portfolio choice problem
Yields interpretable equations (effectively linear factor pricing equations)

But: tailored to specific problems (portfolio choice), non-trivial to apply elsewhere
Postulate SDF process: d¢/€l
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Conclusion

m Basic 1t6 Calculus

m Single-Agent Consumption-Portfolio Choice
m Stochastic Control Methods in Continuous Time

m Hamilton-Jacobi-Bellman (HJB) Equation
m Stochastic Maximum Principle (Pontryagin)
m Martingale Method
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