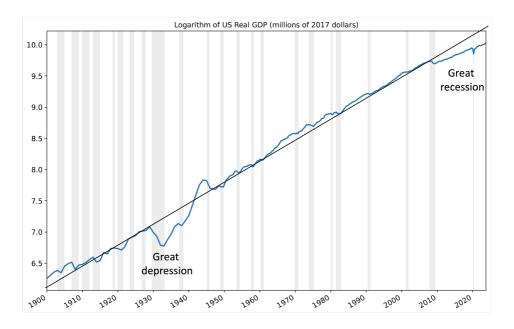
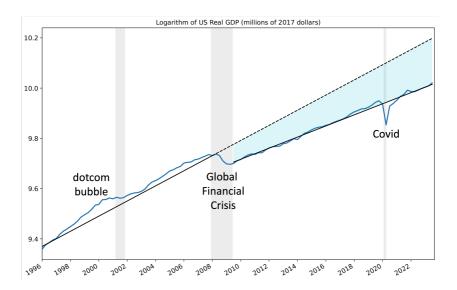
Macrofinance

Lecture 01: Introduction to Macrofinance

Markus Brunnermeier


Princeton University

Summer, 2025


Introduction to Modern Macro, Money & Finance

- Defining Macrofinance
- Contrasting Different Financial Frictions
- Finance vs. Consumption-Focused Macroeconomics
- Dynamic Amplification, Resilience, Volatility Paradox
- Advantages of Continuous Time Modeling

Real US GDP in Log: Financial Crises as Resilience Killers

Real US GDP in Log: Financial Crises as Resilience Killers

Gap in 2023 alone $\approx 3-4$ trillion; Gap over the years (shaded area)

History of Macro and Finance

■ Verbal Reasoning (qualitative)
Fisher, Keynes, ...

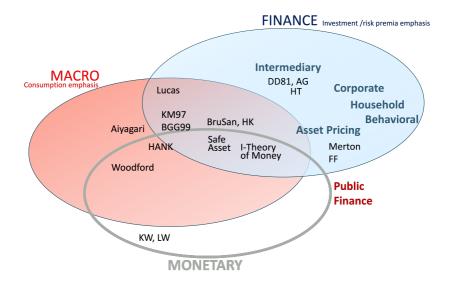
Macro

- Growth theory
 - Dynamic (cts. time)
 - Deterministic

- Introduce stochastic
 - Discrete time
 - Brock-Mirman, Stokey-Lucas
 - DSGE models

Finance

- Portfolio theory
 - Static
 - Stochastic


- Introduce dynamics
 - Continuous time
 - Options Black Scholes
 - Term structure CIR
 - Agency theory Sannikov

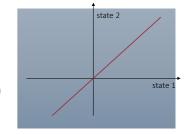
Cts. time macro with financial frictions

What is Macrofinance?

- Macro: aggregate impact (resource allocation and constraint)
- Finance: risk allocation financial/contracting frictions, heterogeneous agents
 ⇒ institutions, liquidity
- Monetary: inside money creation
- How to design Financial Sector, Gov. bonds, etc. to achieve optimal resource and risk allocation
- Topics include:
 - Amplification, percolation of shocks, resilience, financial cycle
 - Financial stability, spillovers, systemic risk measures
 - (Un)conventional central bank policy and balance sheet, maturity structure, CBDC
 - Capital flows

Macrofinance: More than Intersection of Macro & Finance

Heterogeneous Agents


Lending-borrowing/insuring since agents are different

- Friction: state prices/SDF_s/MRS_s differ after transactions
- Wealth distribution matters (net worth of subgroups) matters!
- Financial sector is not a veil

Financial Frictions and Distortions

- Incomplete markets
 - "natural" leverage constraint (BruSan)
 - Costly state verification (BGG)
- + Leverage constraints (no "liquidity creation")
 - Exogenous limit (Bewley/Ayagari)
 - Collateral constraint
 - Current price $D_t \leq q_t k_t$
 - Next period's price $D_t \leqslant q_{t+1}k_t$ (KM)
 - Next period's VaR $D_t \leqslant VaR_t(q_{t+1})k_t$ (BruPed)

Search Friction

(Duffie et al.)

Belief Distortions

Financial Sector

- Financial sector helps to
 - Overcome financing frictions and
 - Channels resources
 - Creates money
- ... but
 - Credit crunch due to adverse feedback loops & liquidity spirals
 - Non-linear dynamics
- New insights to monetary and international economics

Macro: Finance vs. Consumer Focused

■ Portfolio and Investment decision - Macrofinance

- Risk-free rate and risk premia [term-risk, credit risk premia]
- Risk-premia = price of risk * (exogenous risk + endogenous risk)

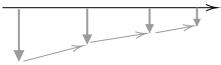
amplification/spirals, runs/sudden

- Δ price = $f(\Delta \mathbb{E}[\text{future cash flows}, \Delta \text{risk premia}])$
- Non-linearities are prominent
 - around ≠ away from steady state
- Heterogeneity: wealth distribution across investors (+ consumers)

Consumption decision

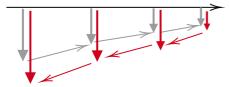
- Demand management [interest rate drives c_t]
 - ZLB (liquidity trap)
- Expectation hypothesis, UIP, ... (limited role for time-varying risk premia)
- Heterogeneity: wealth distribution across consumers (with different MPCs)

Cts.-time Macro: Macrofinance vs HANK


Agents	Heterogenous investor focus - Net worth distribution (often discrete)	Heterogenous consumer focus - Net worth distribution (often cts.)
Tradition:	Finance (Merton) Portfolio and consumption choice	DSGE (Woodford) Consumption choice
	Full/global dynamical system Focused on non-linearities away from steady state (crisis) Length of recession is stochastic	Zero probability shock Deterministic transition dynamics back to steady state Length of recession deterministic
Risk	Risk and Financial Frictions	No aggregate risk (in HANK paper)
Price of risk:	Idiosyncratic and aggregate risk	N/A
Assets:	Capital, money, bonds with different risk profile	All assets are risk free
	Risk-return trade-off Liquidity-return trade-off Flight-to-safety	No risk-return trade-off Liquidity-return trade-off
Money:	Risk and Financial Frictions	Price stickiness

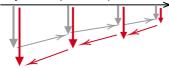
Overview

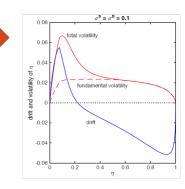
- Defining Macrofinance
- Contrasting Different Financial Frictions
- Finance vs. Consumption-Focused Macroeconomics
- Dynamic Amplification, Resilience, Volatility Paradox
 - First Generation Macrofinance: Log-linearize around steady state, zero probability shock followed by deterministic return to steady state (certainty equivalent beliefs)
 - Second Generation Macrofinance: Global Solution, Volatility Dynamics
- Advantages of Continuous Time Modeling


Persistence and Resilience

- Even in standard real business cycle models, temporary adverse shocks can have long-lasting effects
- Due to feedback effects, persistence is much stronger in models with *financial frictions*
 - Bernanke & Gertler (1989)
 - Carlstrom & Fuerst (1997)
- Negative shocks to net worth exacerbate frictions and lead to lower capital, investment and net worth in future periods

Persistence Leads to Dynamic Amplification


- Static amplification occurs because fire-sales of capital from productive sector to less productive sector depress asset prices
 - Importance of market liquidity of physical capital
- Dynamic amplification occurs because a temporary shock translates into a persistent decline in output and asset prices
 - Forward grow net worth via retained earnings
 - Backward asset pricing → tightens constraints


Endogenous Volatility & Volatility Paradox

■ Endogenous Risk/Volatility Dynamics in BruSan

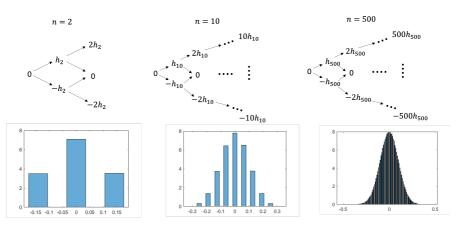
Beyond Impulse responses

- Input: constant volatility
- Output: endogenous risk, time varying volatility
- \Rightarrow Precautionary savings
 - Role for money/safe asset
- ⇒ Nonlinearities in crisis
- ⇒ Endogenous fat tails, skewness
- Volatility Paradox
 - Low exogenous (measured) volatility leads to high build-up of (hidden) endogenous volatility (Minksy' financial instability hypothesis)

Overview

- Defining Macrofinance
- Contrasting Different Financial Frictions
- Finance vs. Consumption-Focused Macroeconomics
- Dynamic Amplification, Resilience, Volatility Paradox
 - First Generation Macrofinance: Log-linearize around steady state, zero probability shock followed by deterministic return to steady state (certainty equivalent beliefs)
 - Second Generation Macrofinance: Global Solution, Volatility Dynamics
- Advantages of Continuous Time Modeling

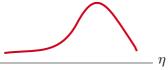
Why Continuous Time Modeling?


- Time aggregation
 - Data come in different frequency
 - GDP quarterly
 - High frequency financial data
- Consumption
 - Same IES within and across periods
 - Discrete time consumption
 - IES/RA within period = ∞ , but across periods = $1/\gamma$
- Optimal stopping problems no interger issues
- Sharp distinction between stock and flow (rate)
 - Beginning of period = end of period wealth
 - E.g. consumption = time-preference rate * end of period wealth

Brownian Motion dZ

Brownian Motion as a binomial tree over Δt .

■ More steps with shrinking step size: $h_n = \sigma \sqrt{\Delta t/n}$



Itô Processes: Characterization, Skewness over Δt

■ Itô processes ... fully characterized by drift and volatility

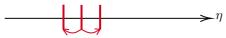
$$dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dZ_t$$

- Arithmetic Itô's Process: $dX_t = \mu_{X,t} dt + \sigma_{X,t} dZ_t$
- Geometric Itô's Process: $dX_t = \mu_t^{\mathsf{X}} X_t dt + \sigma_t^{\mathsf{X}} X_t dZ_t$
- Characterization for full volatility dynamics on Prob.-Space
 - Discrete time:
 - Probability loading on states
 - Conditional expectations $\mathbb{E}[X|Y]$ difficult to handle
 - lacktriangle Cts. time: Loading on a Brownian Motion $\mathrm{d} Z_t$ captured by σ
- Normal distribution for dt, yet with skewed distribution for $\Delta t > 0$

- If σ_t is time-varying
- E.g. from normal-dt to log-normal- Δt and vice versa (geometric dX_t .)

Continuity of Itô Processes

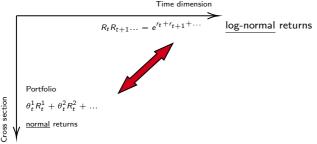
- Continuous path
 - Information arrives continuously "smoothly" not in lumps
 - Implicit assumption: can react continuously to continuous info flow
 - Never jumps over a specific point, e.g. insolvency point
 - Simplifies numerical analysis:
 - Only need change from grid-point to grid-point (since one never jumps beyond the next grid-points)
 - No default risk: Can continuously delever as wealth declines
 - Might embolden investors ex-ante
 - Collateral constraint
 - Discrete time: $b_t R_{t,t+1} \leq \min\{q_{t+1}\}k_t$
 - Cts. time: $b_t \leqslant (p_t + \underbrace{\mathrm{d}p_t})k_t$


For short-term debt - not for long-term debt ... or if there are jumps

- Levy processes ... with jumps
 - Still price of risk * risk, but not linear

Conditional Expectations for Itô

- In discrete time: e.g. $\mathbb{E}_t[V(\eta)]$


 - Need function $V(\eta)$ across all states η
 - Simulate η to obtain probability weights for η all realizations
- In continuous time with Itô: $\left| \mathbb{E}[dV(\eta)] = V'(\eta)\mu_{\eta}\mathrm{d}t + \frac{1}{2}V''(\eta)\sigma_{\eta}^2dt \right|$
 - Just need the two neighboring grid points instead of the whole function $\rightarrow V''(\eta)$

- $V'(\eta)$ is approximated by $\frac{V(\eta+\Delta)-V(\eta)}{\Delta}$ or $\frac{V(\eta)-V(\eta-\Delta)}{\Delta}$; $V''(\eta)$ by $\frac{V(\eta+\Delta)-V(\eta)-(V(\eta)-V(\eta-\Delta))}{\Delta^2}$
- Similar for price $q(\eta)$ Return equations: requires only slope of price function $q(\eta)$ to determine amplification instead of whole price function across all η in discrete time.

Dynamic Portfolio Choice in Continuous Time

Portfolio choice - tension in discrete time

- Linearize kills σ -term, all assets are equivalent
- lacksquare 2nd order approximation kills time-varying σ
- Log-linearize à la Campbell-Shiller
- As $\Delta t \rightarrow 0$ (log) returns converge to normal distribution
 - Constantly adjust the approximation point
 - Nice formula for portfolio choice for Ito process

Consumption Choice & Wealth (Share) Dynamics

- Consumption choice
 - Nice Process
 - Consumption/wealth ratio is constant for log-utility, e.g. for log-utility $c_t = \rho N_t$
 - Beginning = end of period net worth/wealth
- Evolution of state variables wealth (shares)/distribution
 - Nice Characterization
 - Evolution of distributions (e.g. wealth distribution) characterized by Kolmogorov Forward Equation (Fokker-Planck equation)

Conclusion & Takeaways

- Defining Macrofinance
- Contrasting Different Financial Frictions
- Finance vs. Consumption-Focused Macroeconomics
- Dynamic Amplification, Resilience, Volatility Paradox
 - First Generation Macrofinance: Log-linearize around steady state, zero probability shock followed by deterministic return to steady state (certainty equivalent beliefs)
 - Second Generation Macrofinance: Global Solution, Volatility Dynamics
- Advantages of Continuous Time Modeling