Princeton Initiative: Macro, Money, and Finance 2024 New Keynesian Macrofinance

(based on paper "Flight-to-Safety in a New Keynesian Model" joint with Ziang Li)

Sebastian Merkel

September 7, 2024

1

This Lecture

Questions:

- Modeling questions:
 - How to incorporate New Keynesian (NK) price setting frictions into continuous-time macrofinance models?
 - What are implications of adding them to safe asset framework?
- Broader economic questions:
 - What are implications of risk (premium) shocks for aggregate economic activity?
 - How do these shocks transmit to the real economy?
 - How can (monetary) policy affect this transmission?

Will add sticky prices to safe asset framework discussed yesterday and contrast two models:

- **()** model without safe assets (similar to Caballero, Simsek 2020 (CS) & textbook NK)
- Ø model with safe assets in positive supply (Li, Merkel 2024)

Preview of Main Takeaways

No safe assets

- risk shocks may or may not create demand recessions
- shock transmission: two equivalent views
 - intertemporal substitution view (traditional NK intuition)
 - **()** portfolio choice view (\approx "risk-centric view" in terminology of CS)
- S monetary policy can fix recessions \Rightarrow risk shocks only a concern at zero lower bound (ZLB)
- Safe assets:
 - o risk shocks always create demand recessions
 - Shock transmission: portfolio choice is key, not intertemporal substitution
 - **(**) interest rate policy cannot prevent recession \Rightarrow risk shocks are always a concern

Key reason for difference between 1 and 2: nominal safe asset in positive net supply

- nominal: value of safe asset tied to sticky unit of account
- positive net supply: valuation affects aggregate demand (wealth effect)

Outline

1 No Safe Assets

- Setup and Model Solution
- Fully Rigid Prices
- Partial Price Flexibility

2 Safe Asset Model

- Setup
- Shock Transmission

8 Remark: Long-term Bond Extension and Optimal Interest Rate Policy

Outline

1 No Safe Assets

- Setup and Model Solution
- Fully Rigid Prices
- Partial Price Flexibility

2 Safe Asset Model

- Setup
- Shock Transmission

3 Remark: Long-term Bond Extension and Optimal Interest Rate Policy

Model Setup without Safe Assets

- Households ($i \in [0, 1]$):
 - preferences: $\mathbb{E}\left[\int_0^\infty e^{-\rho t} \left(\log c_t^i \frac{(u_t^i)^{1+\varphi}}{1+\varphi}\right) dt\right]$
 - each agent manages capital k_t^i
 - produces capital services $\hat{k}_t^i dt = u_t^i k_t^i dt$, rented out to intermediate goods firms at price p_t^R
 - capital evolution: $dk_t^i = \underbrace{k_t^i d\Delta_t^{k,i}}_{\text{trading}} + \underbrace{k_t^i \tilde{\sigma}_t d\tilde{Z}_t^i}_{\text{idio, shocks}}$
- Intermediate goods firms ($j \in [0,1]$)
 - produce differentiated goods with capital services $y_t^j dt = \hat{k}_t^j dt$, face CES demand
 - set nominal prices \mathcal{P}_t^j subject to quadratic adjustment costs
- Aggregates and market clearing
 - capital market clearing $K := \int k_t^i di$

• goods market clearing
$$\int c_t^i di := C_t = Y_t := \left(\int (y_t^j)^{\frac{\epsilon-1}{\epsilon}} dj\right)^{\frac{\epsilon}{\epsilon-1}}$$

• Exogenous state $\tilde{\sigma}_t \in \{\tilde{\sigma}_l, \tilde{\sigma}_h\}$ Markov chain (transition rates λ_l, λ_h)

Household Problem and Optimal Choices

The household chooses $\{c_t^i, u_t^i, \theta_t^i\}$ to maximize

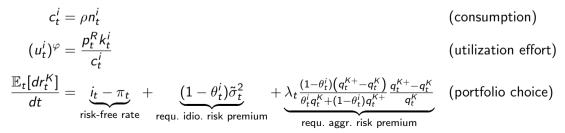
$$\mathbb{E}\left[\int_{0}^{\infty}e^{-
ho t}\left(\log c_{t}^{i}-rac{(u_{t}^{i})^{1+arphi}}{1+arphi}
ight)dt
ight]$$

subject to

$$dn_t^i = -c_t^i dt + n_t^i \left(heta_t^i (i_t - \pi_t) dt + (1 - heta_t^i) dr_t^{K,i}
ight)$$

 $(\theta_t^i \text{ is the portfolio weight in zero net supply nominal bonds})$

Optimal choices:



The Output-Asset Price Relation

• Aggregate supply: $Y_t = u_t K$

• optimal utilization choice: all households choose same $u_t^i = u_t$

- will see later: all firms choose same price, $P_t^j = P_t$
- Aggregate demand: $C_t = \rho q_t K$ where $q_t := N_t / K (= q_t^K)$
 - from aggregating optimal consumption choices
- Plug into goods market clearing, cancel K:

$$u_t = \rho q_t$$

- This is the output-asset price relation
 - to understand aggregate demand (and economic activity), we need to determine asset prices

Pricing Aggregate Wealth

- Portfolio choice view:
 - start from portfolio choice condition, use $\mathbb{E}_t[dr_t^{\mathcal{K}}] =
 ho dt + \mathbb{E}_t[dq_t]/q_t$
 - use asset market clearing $\theta_t^i = \theta_t = 0$
- Intertemporal substitution view:
 - individual consumption Euler equation:

$$\frac{\mathbb{E}_t[d(1/c_t^i)]}{1/c_t^i} = (i_t - \pi_t - \rho)dt$$

• use
$$dc_t^i/c_t = dC_t/C_t + ilde{\sigma}_t d ilde{Z}_t^i$$
 and $C_t =
ho q_t K$

In both cases we obtain

$$\mathbb{E}_t[dq_t] = \left(i_t - \pi_t - \rho + \tilde{\sigma}_t^2 + \lambda_t \frac{(q_t^+ - q_t)^2}{q_t^+ q_t}\right) q_t dt$$

Remarks:

- This is (essentially) the New Keynesian IS equation
- Both views are equivalent because capital is only component of net wealth

Optimal Price Setting of Intermediate Goods Firms

- Firm price setting problem with flexible prices
 - constant markup over unit marginal cost

$$\mathcal{P}_t^j/\mathcal{P}_t = rac{\epsilon}{\epsilon-1} p_t^R$$

- in equilibrium $\mathcal{P}_t^j = \mathcal{P}_t$ for all j, so this determines rental price: $p_t^R = \frac{\epsilon 1}{\epsilon} =: p^{R, flex}$
- Sticky prices (quadratic adj. costs) lead to New Keynesian Phillips curve

$$\frac{\mathbb{E}_{t}\left[d\pi_{t}\right]}{dt} = \rho\pi_{t} - \kappa\left(p_{t}^{R} - p^{R, \textit{flex}}\right) = \rho\pi_{t} - \kappa\left(u_{t}^{1+\varphi} - p^{R, \textit{flex}}\right)$$

• Simpler to analyze, but identical conclusions: static Phillips curve

$$\pi_t = \kappa \left(u_t^{1+\varphi} - \rho^{R, \textit{flex}} \right)$$

 \rightarrow will work with this version here

 $u_t = \rho q_t$

output-asset price relation

$$\mathbb{E}_t[dq_t] = \left(i_t - \pi_t - \rho + \tilde{\sigma}_t^2 + \lambda_t \frac{(q_t^+ - q_t)^2}{q_t^+ q_t}\right) q_t dt \qquad \mathsf{IS} \ / \ \mathsf{capital} \ \mathsf{pricing} \ \mathsf{equation}$$

$$\pi_t = \kappa \left(u_t^{1+arphi} - p^{R, \mathit{flex}}
ight)$$

Phillips curve

 $u_t = \rho q_t$

output-asset price relation

$$\mathbb{E}_t[dq_t] = \left(i_t - \pi_t - \rho + \tilde{\sigma}_t^2 + \lambda_t \frac{(q_t^+ - q_t)^2}{q_t^+ q_t}\right) q_t dt \qquad \text{IS / capital pricing equation}$$

$$\pi_t = \kappa \left(u_t^{1+\varphi} - p^{R, flex} \right)$$
Phillips curve

Substituting static equations into dynamic equation yields single equation for u_t :

$$\mathbb{E}_t[du_t] = \left(i_t - \kappa(u_t^{1+\varphi} - p^{R, flex}) - \rho + \tilde{\sigma}_t^2 + \lambda_t \frac{(u_t^+ - u_t)^2}{u_t^+ u_t}\right) u_t dt$$

Let's make the following assumptions:

- monetary policy implements the flexible price allocation in state $\tilde{\sigma}_I \Rightarrow \pi_I = 0$, $u_I = u^{flex} := (p^{R, flex})^{1/(1+\varphi)}$, $q_I = q^{flex} := u^{flex}/\rho$
- the interest rate is held constant at $i_t = i_h$ in state $\tilde{\sigma}_h$
- look for equilibria that are Markovian in $\tilde{\sigma}_t$ (minimum state variable selection)

Then key equation in state $\tilde{\sigma}_h$ simplifies to

$$0 = i_h - \kappa \left(u_h^{1+\varphi} - p^{R, flex} \right) - \rho + \tilde{\sigma}_h^2 - \lambda_h \left(1 - \frac{u_h}{u^{flex}} \right)$$

Outline

No Safe Assets

- Setup and Model Solution
- Fully Rigid Prices
- Partial Price Flexibility

2 Safe Asset Model

- Setup
- Shock Transmission

3 Remark: Long-term Bond Extension and Optimal Interest Rate Policy

Let's first consider the case with fully rigid prices, $\kappa = 0$ (Caballero, Simsek 2020)

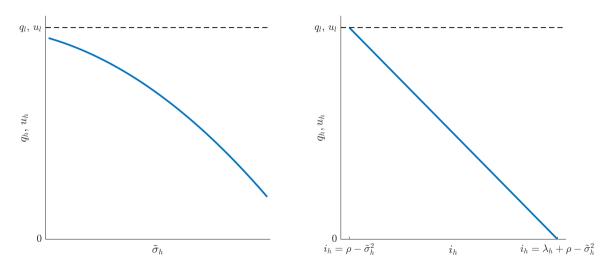
$$0 = i_h - \rho + \tilde{\sigma}_h^2 - \lambda_h \left(1 - \frac{u_h}{u^{flex}} \right)$$

Can solve this in closed form

$$u_h = \frac{\lambda_h + \rho - \tilde{\sigma}_h^2 - i_h}{\lambda^h} u^{flex}$$

Remark: For valid equilibrium, need to assume $\lambda_h + \rho - \tilde{\sigma}_h^2 > i_h$

Comparative Statics with Respect to Risk and Interest Rates



Conclusions

- Risk shocks (transition to $\tilde{\sigma}_h$) create aggregate demand recessions ($u_h < u^{flex}$) if $i_h > \rho \tilde{\sigma}_h^2$
- Two equivalent intuitions:
 - portfolio choice intuition ("risk-centric view"):

risk premium $\uparrow \rightarrow$ discount rate $i_t + \tilde{\sigma}_t^2 \uparrow \rightarrow$ asset price $q_t \downarrow \rightarrow$ aggregate demand \downarrow

• intertemporal substitution intuition (traditional view):

risk $\uparrow \ \rightarrow$ precautionary motive $\uparrow \ \rightarrow$ natural rate $\downarrow \ \rightarrow$ aggregate demand \downarrow

Monetary policy can fix demand recessions unless constrained

- lowering i_h raises asset prices and aggregate demand
- can restore flex price allocation for $i_h = \rho \tilde{\sigma}_h^2$
- with lower bound on interest rates (e.g. ZLB): may not be feasible

Outline

1 No Safe Assets

- Setup and Model Solution
- Fully Rigid Prices
- Partial Price Flexibility

2 Safe Asset Model

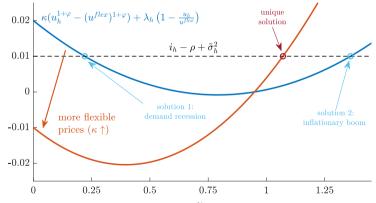
- Setup
- Shock Transmission

3 Remark: Long-term Bond Extension and Optimal Interest Rate Policy

What if Prices Are not Fully Rigid?

Assume $\kappa > 0$, rewrite key equilibrium equation:

$$\kappa \left(u_h^{1+\varphi} - (u^{\text{flex}})^{1+\varphi} \right) + \lambda_h \left(1 - \frac{u_h}{u^{\text{flex}}} \right) = i_h - \rho + \tilde{\sigma}_h^2$$



Structure of Minimum State Variable Equilibria

Proposition

Suppose $i^h \ge \rho - \tilde{\sigma}_h^2$ and $\kappa > 0$. Then there are at most two equilibria:

- <u>"Keynesian" equilibrium</u>: an equilibrium that features an aggregate demand recession, $u_h < u^{\text{flex}}$, and deflation, $\pi_h < 0$.
 - comparative statics: u_h , π_h , and q_h are decreasing in both i_h and $\tilde{\sigma}_h$.
 - existence: this equilibrium only exists for sufficient price stickiness, $\kappa < \hat{\kappa} := \frac{\lambda_h + \rho \tilde{\sigma}_h^2 i_h}{\rho^{R, flex}}$
- ⁽¹⁾ <u>"Fisherian" equilibrium</u>: an equilibrium that features an aggregate demand boom, $u_h > u^{flex}$, and inflation, $\pi_h > 0$.
 - comparative statics: u_h , π_h , and q_h are increasing in both i_h and $\tilde{\sigma}_h$.
 - existence: this equilibrium always exists.
 - Previous three conclusions continue to hold for sufficiently sticky prices (if we select the Keynesian equilibrium)
 - Otherwise, conclusion 1 (demand recession) not implied by the model (conclusions 2 & 3 can be suitably adapted, but intuition and ZLB problem change)

Outline

No Safe Assets

- Setup and Model Solution
- Fully Rigid Prices
- Partial Price Flexibility

2 Safe Asset Model

- Setup
- Shock Transmission

3 Remark: Long-term Bond Extension and Optimal Interest Rate Policy

Recall: Setup of Previous Model

- Continuum of households
 - manage capital subject to (uninsurable) idiosyncratic shocks
 - decide on capital utilization (utility/effort cost)
- Continuum of intermediate goods firms
 - rent capital from households to produce differentiated goods
 - set nominal prices subject to price adjustment costs
- $\bullet\,$ Final good = CES aggregate of intermediate goods
- Exogenous state: Markov switching in volatility of idiosyncratic shocks $(\tilde{\sigma}_t)$
- Changes: add nominal government bonds
 - plays role of safe asset: agents can derive service flow from retrading (as in Markus' lecture yesterday)

Modified Model Setup with Nominal Government Debt

- Government issues nominal bonds
 - nominal face value \mathcal{B}_t , evolution $d\mathcal{B}_t = \mu_t^{\mathcal{B}} \mathcal{B}_t dt$
 - pays (floating) interest *i*_t (in paper: long-term bonds)
 - real value $q_t^B K := \mathcal{B}_t / \mathcal{P}_t$
- Interest paid with new bonds or taxes τ_t on capital

$$i_t \mathcal{B}_t = \mu_t^{\mathcal{B}} \mathcal{B}_t + \mathcal{P}_t \tau_t \mathcal{K}_t \qquad \Rightarrow \qquad i_t = \mu_t^{\mathcal{B}} + \frac{\tau_t}{q_t^{\mathcal{B}}} =: \mu_t^{\mathcal{B}} + \breve{s}_t$$

• Household net worth evolves according to

$$dn_t^i = -c_t^i dt + n_t^i (heta_t^i dr_t^{\mathcal{B}} + (1- heta_t^i) dr_t^{\mathcal{K}})$$

• Notation: share of bond wealth

$$\vartheta_t := rac{\mathcal{B}_t/\mathcal{P}_t}{q_t^K K_t + \mathcal{B}_t/\mathcal{P}_t} = rac{q_t^B}{q_t}$$

in equilibrium: $\vartheta_t = \theta_t$ is also individual portfolio weight in bonds

Why Is it Interesting to Add Bonds to this Model?

The bond value q_t^B introduces two important features into the model:

- One of the second se
 - $q_t^B = \mathcal{B}_t / \mathcal{P}_t / K$ depends on price level \mathcal{P}_t
 - bonds represent net wealth (Ricardian equivalence fails due to safe asset service flows)
 - hence, nominal prices affect total wealth $(q_t K)$ and consumption demand $(
 ho q_t K)$
 - this conclusion holds even under flexible prices
- **2** Under sticky prices: the real quantity of safe assets q_t^B becomes a state variable
 - \mathcal{B}_t is the stock of previously issued bonds ightarrow natural state variable
 - \mathcal{P}_t follows backward-looking evolution due to price stickiness
 - ullet difference to flexible prices where \mathcal{P}_t and q^B_t are forward-looking "jump variables"
 - q_t^B is "slow-moving": has only drifts, no jumps

Outline

No Safe Assets

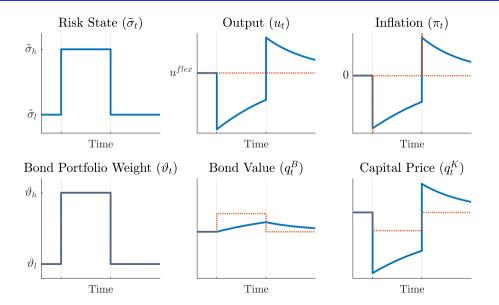
- Setup and Model Solution
- Fully Rigid Prices
- Partial Price Flexibility

2 Safe Asset Model

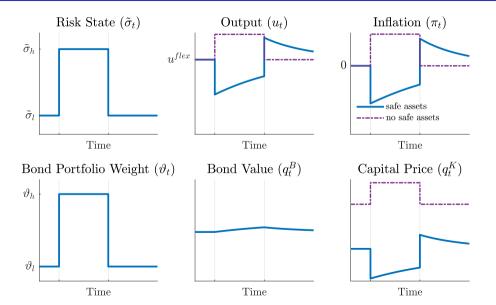
- Setup
- Shock Transmission

3 Remark: Long-term Bond Extension and Optimal Interest Rate Policy

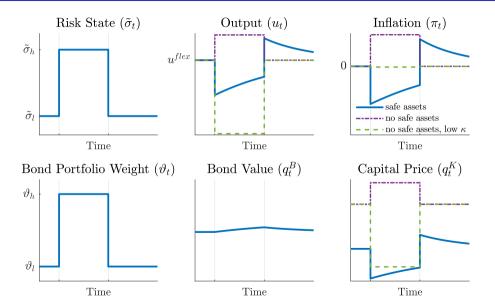
Model Simulation: Flexible and Sticky Prices



Model Simulation: Comparison to Model without Safe Assets



Model Simulation: Comparison to Model without Safe Assets



Transmission Preliminaries I: Separation of Portfolio Choice

- Portfolio choice depends only on the relative return and relative risk of capital and bonds, *not* on aggregate output and price setting frictions
- "Bond Valuation Equation": ϑ_t satisfies in equilibrium

$$artheta_t = \mathbb{E}_t \left[\int_t^\infty e^{-
ho(s-t)} artheta_s \left((1-artheta_s)^2 ilde{\sigma}_s^2 + ilde{s}_s
ight) ds
ight].$$

- <u>Separation</u>: if \check{s}_t is function of $(\tilde{\sigma}_t, \vartheta_t)$ only, then $\vartheta_t = \vartheta(\tilde{\sigma}_t)$ does not depend on bond valuation state q_t^B
 - ightarrow portfolios adjust "fast" (as under flexible prices)

(Remark: assumption satisfied, e.g., by linear policy rule that relates surplus-output to debt-output ratio)

• Unless \breve{s} leans strongly against it, transition to σ_h leads to increase in ϑ (flight to safety)

Transmission Preliminaries II: Asset Valuations and Demand

• Recall output-asset price relationship (relates real activity to *level of asset valuations*)

$$u_t = \rho q_t = \rho (q_t^B + q_t^K)$$

• Portfolio choice (ϑ_t) determines *relative asset valuations*

$$q_t = q_t^B + q_t^K = rac{1}{artheta_t} q_t^B$$

• Combining the previous:

$$u_t = \rho \frac{q_t^B}{\vartheta_t}$$

Shock Transmission under Flexible Prices – Impact Effect

$$u_t = \rho \frac{q_t^B}{\vartheta_t}$$

Shock: $\tilde{\sigma}_t \uparrow \rightarrow \vartheta_t \uparrow$

- ightarrow For given q_t^B , demand decreases
- \rightarrow Supply $(u_t = u^{flex})$ is fixed, bond value $q_t^B = \mathcal{B}_t / \mathcal{P}_t / K$ rises to increase demand
- \Rightarrow Requires downward adjustment in price level \mathcal{P}_t on impact

Shock Transmission under Sticky Prices – Impact Effect

$$u_t = \rho \frac{q_t^B}{\vartheta_t}$$

- All terms on right-hand side are already determined
 - ϑ_t by portfolio choice separation (only depends on $\tilde{\sigma}$ and \tilde{s} paths)
 - q_t^B is a state variable under sticky prices
- \Rightarrow Demand is completely rigid on impact, unable to adjust
- \Rightarrow Supply (utilization u_t) must clear goods market

<u>Conclusion 1</u>: Uncertainty shocks create demand recessions for any degree of price stickiness (so long as *š*-policy does not fully lean against flight to safety)

Shock Transmission under Sticky Prices – Adjustment Dynamics

- After shock, gradual deflation slowly increases q_t^B ("Pigou effect")
- Dynamics guided by two equations
 - Bond value evolution (backward looking):

$$dq_t^{B} = \left(\underbrace{i_t - \breve{s}_t}_{=\mu_t^{B}} - \pi_t\right) q_t^{B} dt$$

• Phillips curve:

$$\pi_{t} = \kappa \left(u_{t}^{1+\varphi} - p^{R, \textit{flex}} \right) = \kappa \left(\left(\rho \frac{q_{t}^{B}}{\vartheta_{t}} \right)^{1+\varphi} - p^{R, \textit{flex}} \right)$$

• Closed-form solution for constant $i_t = i_h$, $\breve{s}_t = \breve{s}_h \ (\Rightarrow \mu_t^{\mathcal{B}} = \mu_h^{\mathcal{B}} \text{ is constant})$:

$$q_t^B = \left(\frac{\alpha(q_0^B)^{1+\varphi}}{\beta(q_0^B)^{1+\varphi}\left(1-e^{-\alpha t}\right)+\alpha e^{-\alpha t}}\right)^{\frac{1}{1+\varphi}},$$

where $\alpha := (1+\varphi)(\mu_h^B + \kappa p^{R, \text{flex}}), \quad \beta := (1+\varphi)\kappa \left(\frac{\rho}{\vartheta_h}\right)^{1+\varphi}$

Intertemporal Substitution versus Portfolio Choice

- Standard NK story: intertemporal substitution drives aggregate demand
 - key equation: IS equation (in terms of wealth-capital ratio q_t)

 $\mathbb{E}_t[dq_t] = (i_t - \pi_t - \text{``neutral rate''}) q_t dt$

- relates level of wealth to level of interest rate
- usual interpretation: future q_T fixed (e.g., by "anchored beliefs"), q_0 adjusts
- if $i_t \pi_t >$ "neutral rate" for a while: q_0 falls (demand recession)

Intertemporal Substitution versus Portfolio Choice

- Standard NK story: intertemporal substitution drives aggregate demand
 - key equation: IS equation (in terms of wealth-capital ratio q_t)

 $\mathbb{E}_t[dq_t] = (i_t - \pi_t - \text{``neutral rate''}) q_t dt$

- relates level of wealth to level of interest rate
- usual interpretation: future q_T fixed (e.g., by "anchored beliefs"), q_0 adjusts
- if $i_t \pi_t >$ "neutral rate" for a while: q_0 falls (demand recession)
- This model: portfolio demand for nominal safe assets drives aggregate demand
 - recall: $u_t =
 ho q_t^B/artheta_t$ fully determined by $artheta_t$ and safe asset state q_t^B
 - Why not equivalent anymore to intertemporal substitution view?
 - portfolio choice determines relative asset values ϑ_t from excess return & excess risk of capital
 - "level component" in $q_t = q_t^B/\vartheta_t$ is backward-looking state variable q_t^B

Conclusion 2: Portfolio choice and flight to safety are key for shock transmission

Interest Rate Policy Ineffectiveness

- How does *i*_t affect aggregate demand?
 - **(**) Portfolio separation: portfolio demand for safe assets (ϑ_t) unaffected by i_t
 - 2 Safe asset value q_t^B is slow-moving state: affected by i_t only gradually over time
 - here (due to zero duration): higher $i_t \Rightarrow$ higher $\mu_t^{\mathcal{B}}$
 - in particular: rate hikes are inflationary ("Neo-Fisherian" prediction)
 - \Rightarrow Impact effect of shock on aggregate demand unaffected by interest rate policy
- Conclusion 3: interest rate policy cannot eliminate aggregate demand recession

Interest Rate Policy Ineffectiveness

- How does i_t affect aggregate demand?
 - **(**) Portfolio separation: portfolio demand for safe assets (ϑ_t) unaffected by i_t
 - 2 Safe asset value q_t^B is slow-moving state: affected by i_t only gradually over time
 - here (due to zero duration): higher $i_t \Rightarrow$ higher $\mu_t^{\mathcal{B}}$
 - in particular: rate hikes are inflationary ("Neo-Fisherian" prediction)
 - \Rightarrow Impact effect of shock on aggregate demand unaffected by interest rate policy
- Conclusion 3: interest rate policy cannot eliminate aggregate demand recession
- Difference to model without bonds?
 - no bonds: sticky price dynamics essentially stateless
 - q_t , u_t determined by purely forward-looking conditions
 - task of policy: expectations management
 - with bonds: aggregate demand depends on (slow-moving) safe asset state
 - new policy consideration: manage dynamics of safe asset supply

Aside: Capital Price Overshooting

- Portfolio separation: ϑ_t rises as fast as under flexible prices
- Stickiness of bond value: q_t^B unaffected by shock, whereas $q_t^{B,\mathit{flex}}$ \uparrow
- Consequence: capital price *overshoots* relative to flexible price response
 - $q_t^{\kappa} = (1 artheta_t) / artheta_t \cdot q_t^B$ falls by more under sticky prices
- Corrects major shortcoming of flexible price model (Brunnermeier, Merkel, Sannikov 2024)
 - in that model: bond market (q^B) more volatile than stock market (q^K)
 - here: any degree of price stickiness shifts all relative volatility into q^{K} fluctuations
- Reminiscent of Dornbusch's (1976) overshooting model
 - $\bullet\,$ original: sticky domestic price \rightarrow volatile exchange rate
 - $\bullet\,$ here: sticky bond value \rightarrow volatile capital price

Outline

No Safe Assets

- Setup and Model Solution
- Fully Rigid Prices
- Partial Price Flexibility

2 Safe Asset Model

- Setup
- Shock Transmission

8 Remark: Long-term Bond Extension and Optimal Interest Rate Policy

How Can Policy Stabilize Aggregate Demand on Impact?

- Manage safe asset demand by distorting portfolio choice
 - use policy instrument \breve{s}_t (by adjusting taxes)
 - mitigates flight to safety, but not optimal (in richer model) (safe asset services more valuable when $\tilde{\sigma}$ is large, higher ϑ beneficial)

2 Manage safe asset supply by introducing safe asset whose value is not (fully) sticky

- Iump-sum transfers (or taxes, if negative)
 - PV of lump-sum transfers acts as implicit safe asset
 - use dynamic adjustments of transfers to absorb variations in safe asset demand
 - issue: works in theory but difficult in practice
- long-term bonds
 - *i*-policy affects (flexible) nominal bond price through expected future rates
 - but: cannot control i_t and q_t^B independently, insufficient to prevent demand recession
 - $\rightarrow\,$ generates interesting policy problem, details in paper

- New Keynesian model without (nominal) safe assets
 - risk shocks generate demand recessions only for sufficiently sticky prices
 - and interest rate can always prevent recessions if unconstrained
 - so should be worried about these shocks only at the ZLB
- New Keynesian model with safe assets
 - safe asset stock becomes a slow-moving state variable
 - risk shocks lead to flight to safety (portfolio reallocation towards bonds)
 - and this always triggers a demand recession
 - interest rate policy can manage the recovery but not prevent the recession