Online Summer School Macro, Money, Finance Problem Set 4

July 10, 2024

Please submit your solutions to the dropbox link by 7/16/2024 8:30am (EST).

1 Money Model with Stochastic Volatility

Consider the model of Lecture 10 with log utility and without government policy ($\mu^{\mathcal{B}} = i = \mathscr{G} = \tau = 0$).¹ In this problem, we add stochastic volatility to the model. Suppose idiosyncratic risk $\tilde{\sigma}_t$ evolves according to the exogenous stochastic process

$$d\tilde{\sigma}_t = b(\tilde{\sigma}^{ss} - \tilde{\sigma}_t)dt + \nu\sqrt{\tilde{\sigma}_t}dZ_t,$$

where $\tilde{\sigma}^{ss}$, b and ν are positive constants.

- 1. Use goods market clearing and optimal investment to express q^K , q^B and ι in terms of $\vartheta := \frac{q^B}{q^K + q^B}$
- 2. Derive the "money valuation equation" using martingale method:
 - (a) First, write down:
 - Returns on capital $(dr_t^{K,\tilde{i}})$ and bonds $(dr_t^{\mathcal{B}})$, and the law of motion for individual wealth $n_t^{\tilde{i}}$. Keep in mind that q_t^K and $q_t^{\mathcal{B}}$ are now stochastic processes.
 - Prices of idiosyncratic and aggregate risks, $\tilde{\varsigma}_t$ and ς_t respectively. You may take as given that prices of risk are volatility loadings of net worth.
 - (b) Use the martinagale pricing condition:

$$\frac{\mathbb{E}[dr_t^{K,i}]}{dt} - \frac{\mathbb{E}[dr_t^{\mathcal{B}}]}{dt} = \varsigma_t(\sigma_t^{r^{K,\tilde{i}}} - \sigma_t^{r^{\mathcal{B}}}) + \tilde{\varsigma}_t(\tilde{\sigma}_t^{r^{K,\tilde{i}}} - \tilde{\sigma}_t^{r^{\mathcal{B}}})$$

and market clearing conditions to derive an expression of the form $\mu_t^{\vartheta} = f(\vartheta_t, \tilde{\sigma}_t)$, where function f only depends on model parameters (the "money valuation equation").²

¹There can still be a (constant) supply of bonds $\mathcal{B}_t \neq 0$.

²You should derive an expression for μ_t^ϑ using Ito's Lemma and the definition of $\vartheta_t := \frac{q_t^{\mathcal{B}}}{q_t^{\mathcal{K}} + q_t^{\mathcal{B}}}$ to substitute $\mu_t^{q^{\mathcal{K}}} - \mu_t^{q^{\mathcal{B}}}$ in the martingale condition.

- 3. Suppose that $\nu = 0$ and the economy is at the steady state with $\tilde{\sigma}_t = \tilde{\sigma}^{ss}$.
 - Derive expressions for $q^{\mathcal{B}}$, q^{K} and ϑ in the monetary and non-monetary equilibria.
 - What is the smallest value of $\tilde{\sigma}^{ss}$ that allows for a monetary equilibrium? Denote this value by $\tilde{\sigma}^{ss}_{min}$.
 - Suppose that $\tilde{\sigma}^{ss} > \tilde{\sigma}^{ss}_{min}$, what happens to $q^{\mathcal{B}}$, q^{K} and ϑ as $\tilde{\sigma}^{ss}$ rises?
 - Suppose that $0 < \tilde{\sigma}^{ss} < \tilde{\sigma}^{ss}_{min}$, what happens to $q^{\mathcal{B}}$, q^{K} and ϑ as $\tilde{\sigma}^{ss}$ falls?
- 4. Suppose that $\nu > 0$ and solve the model numerically:
 - (a) Set a = 0.2, $\phi = 1$, $\delta = 0.05$, $\rho = 0.01$, $\tilde{\sigma}^{ss} = 0.2$, b = 0.05, $\nu = 0.02$.
 - (b) Since $\tilde{\sigma}_t$ follows a Cox–Ingersoll–Ross process, it is distributed according to Gamma distribution with parameters $\alpha = 2b\tilde{\sigma}^{ss}/\nu^2$ and $\beta = 2b/\nu^2$:

$$f(\tilde{\sigma}) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \tilde{\sigma}^{\alpha-1} e^{-\beta\tilde{\sigma}}$$

Based on this, suggest a grid for $\tilde{\sigma}$ and construct the M matrix using build_M.m.

- (c) Apply Ito's lemma to $\vartheta_t = \vartheta(\tilde{\sigma}_t)$, and equate the drift term with $\vartheta_t \mu_t^{\vartheta}$, using the expression for μ_t^{ϑ} from question 2. This gives you an HJB-looking equation for $\vartheta(\tilde{\sigma})$.
- (d) Solve the model using value function iteration:
 - i. Rewrite the money valuation equation such that in the discretized form you get:

$$\rho\vartheta = \mathbf{u}(\vartheta) + \mathbf{M}\vartheta$$

ii. Write a loop that updates $\vartheta(\tilde{\sigma})$ with the implicit method:

$$\vartheta_{t-\Delta t} = \left((1+\rho\Delta t)\mathbf{I} - \Delta t\mathbf{M} \right)^{-1} \left(\Delta t \mathbf{u}(\vartheta_t) + \vartheta_t \right)$$

iii. Iterate over $\vartheta(\tilde{\sigma})$ until convergence.

(e) Plot $\vartheta, q^{\mathcal{B}}, q^{K}, r^{f}, \varsigma, \tilde{\varsigma}$ as functions of $\tilde{\sigma}^{3}$. Explain the dependence of the variables on $\tilde{\sigma}$.

³To compute r^f you would be using Ito's formula and the martingale pricing formula for $dr^{K,\tilde{i}}$ or $dr^{\mathcal{B}}$.