Summer School: Macro, Money, and Finance Problem Set 1: A Continuous Time Kiyotaki-Moore Model

June 20, 2024

1 Introducing Physical Investment

In class, we consider a deterministic two sector model with fixed aggregate capital \bar{K} . Now we add investment to it. We introduce a concave capital conversion function $\Phi(\iota)$ with assumption $\Phi'(\cdot) > 0$, $\Phi''(\cdot) < 0$ for investment rate ι and capital depreciation rate δ . For example, consider an agent with capital k_t at time t with investment rate ι_t . His real investment is $\iota_t k_t$, and the capital accumulation is $(\Phi(\iota_t) - \delta)k_t$. This is equivalent to a convex adjustment cost assumption.

1. Optimal Investment Decision. Consider the following time line of operating the capitals:

- At t, agent i purchase capital k_t^i at price q_t .
- He/she makes the (optimal) investment decision ι_t^i within period [t, t + dt).
- The capital generates output $a^i(k_t^i)$ at time t + dt
- Finally agent *i* sell the capital k_{t+dt}^i at market price q_{t+dt} .

The total gains are:

$$\pi_t dt = \underbrace{q_{t+dt}k_{t+dt}^i - q_t k_t^i}_{\textcircled{1}} + \underbrace{(a^i(k_t^i) - \iota_t^i k_t^i)dt}_{\textcircled{3}} dt$$

where (1) represents the gain from holding and reselling, (2) represents the dividend (output) flow, and (3) represents the investment cost.

- (a) Derive the expression for the return rate, $\frac{\pi_t}{q_t k_t}$. Do the decomposition for (1)(2)(3) for π_t .
- (b) Show that optimal investment ι_t^i is the same for $i \in \{e, h\}$, and is determined by:

$$\frac{1}{q_t} = \Phi'(\iota_t^i)$$

This is the Tobin's Q condition.

(c) For conversion function $\Phi(\iota) = \frac{1}{\phi} \log(\phi \iota + 1)$, what is the optimal investment ι_t given price q_t ?

- 2. Amplification via Investment Channel. Consider the KM-model of the slides. Now we introduce the investment conversion function $\Phi(\iota) = \frac{1}{\phi} \log(\phi \iota + 1)$. We still assume that $a_h(1 - \kappa) = \kappa$. Hint: While on the slides the goods market clearing condition stated consumption equals output, now consumption plus investment $\iota_t K_t$ equals output.
 - (a) Consider a steady state where collateral constraint is binding. Write down a set of equations such that equilibrium objects (κ^e, η, q) are pinned down. Is there a steady state for K? *Hint*: Consider the scalability (aK) of production technology.

2 Coding Continuous Time Kiyotaki-Moore Model

 Please replicate the global solution figures (of Lecture 01, slide 23) for the case with ι-investments. You can simply modify the Matlab code provided on the summer school website. (If you do not have access to Matlab feel free to convert the Matlab code into a different programming language (Julia, Python, ...) using ChatGPT.