Eco529: Modern Macro, Money, and International Finance Lecture 12: One Sector Monetary Model FTPL, Monetarism, and Sargent-Wallace

Markus Brunnermeier

Princeton University

Fall, 2023

Course Overview

Real Macro-Finance Models with Heterogeneous Agents

- 1 A Simple Real Macro-finance Model
- 2 Endogenous (Price of) Risk Dynamics
- 3 A Model with Jumps due to Sudden Stops/Runs

Money Models

1 A Simple Money Model

FTPL, Monetarism, Sargent-Wallace

- 2 Cashless vs. Cash Economy and "The I Theory of Money"
- 3 Price Rigidities New Keynesian Elements
- 4 Welfare Analysis & Optimal Policy
 - Fiscal, Monetary, and Macroprudential Policy

International Macro-Finance Models

1 International Financial Architecture

Digital Money

Overview Across Lectures 10-13

Store of Value Monetary Model with One Sector and No Aggregate Risk

- Safe Asset and Service Flows
- Bubble (mining) or not
- 2 Different Asset Pricing Perspectives/SDFs

Store of Value Monetary Model with Time-varying Idiosyncratic Risk

- \blacksquare Safe asset, Flight-to-Safety and negative CAPM- β
- Flight-to-Safety and Equity Excess Volatility
- Debt valuation puzzle, Debt Laffer Curve,
- Safe Asset and Bubble Complementarity
- Policies to Maintain Safe Asset Privilege on Gov. Bond
- Medium of Exchange Role, FTPL, Sargent-Wallace

The 3 Roles of Money

Store of value

- Bond is less risky than other "capital" no idiosyncratic risk
- Govt bond is a special safe asset
 - helps to partially overcome incomplete markets/OLG frictions
 - (- helps to relax colleteral constraints)
- Fiscal Theory of Price Level (FTPL):

$\frac{\mathcal{B}_t + \mathcal{M}_t}{\mathcal{P}_t} = \mathbb{E}_t \int_t^T \frac{\xi_s}{\xi_t} (\text{primary surpluses})_s \mathrm{d}s + \mathbb{E}_t \int_t^T \frac{\xi_s}{\xi_t} \Delta i_s \frac{\mathcal{M}_s}{\mathcal{P}_s} \mathrm{d}s + \frac{\xi_T}{\xi_t} \frac{\mathcal{B}_T + \mathcal{M}_T}{\mathcal{P}_T}$

- Monetary vs. fiscal dominance

Medium of exchange

- Overcome double-coincidence of wants problem
- (Narrow) money is special gov. bond
 - helps to overcome double-coincidence of wants friction
 - (cash-in-advance, money in utility, shopping time models)
 - lower interest rate Δi_s
- Monetarisms: Quantity Equation $\nu_t \mathcal{M}_t = \mathcal{P}_t T_t \text{ (or } \mathcal{P}_t Y_t \text{)}$

Unit of account

- Intratemporal: Numeraire bounded rationality
- Intertemporal: Debt contracts incomplete markets
 - New Keynesian wage/price stickiness

Credit, Money, Reserves, and Government Debt

Credit vs. Money

- Credit zero net supply
- Money (Gov. bond) positive net supply
 - Perfect credit renders money useless
- Gov. Debt vs. Money in form of Cash and Reserves
 - Gov. debt: convenience yield as it relaxes collateral constraint
 - Money \mathcal{M}_t has lower interest rate Δi if it offers medium of exchange role in addition
 - Reserves: Interest bearing
 - Special form of government debt:
 - Infinite maturity more like equity (no rollover risk)
 - Zero duration more like overnight debt
 - Banking system can't offload it Financial Repression
 - Is QE simply swapping one form of gov. debt for another one, reserves?
 - Cash: extra convenience yield and zero interest \Rightarrow lower return by Δi
 - Fintech revolution erodes extra convenience yield

Price Stickiness and Phillips Curve

Flexible prices: Prices adjust immediately

- Sticky prices:
 - Since prices adjust sluggishly, output has to adjust
 - Inflation pressure: prices too low during transition period, output (demand) overshoots natural (= flexible price) level
 - Deflation pressure: prices too high during transition period, output (demand) undershoots natural level

- Sticky price models smooth out adjustment dynamics relative to equivalent flex price models

Overview

FTPL Money Delusion vs. Short-run AD Effects

- Price Level Determination
- Neo-Fisherian vs. Stepping on the Rake
 - Government bonds with different Maturity
 - Temporary Anti-Fisherian: "Stepping on the Rake"
- Medium of Exchange Role of Money
 - Quantity Equation
 - Generalizing FTPL Equation (2 ways)
 - Friedman Rule
 - QE
 - Fiscal-Monetary Interaction
- Sargent-Wallace
- Price/Wage stickiness (later)

Inflation – Fiscal Link for the US

Sims (1994): "In a fiat-money economy, inflation is a fiscal phenomenon, even more fundamentally than it is a monetary phenomenon".

Source: FRED, MeasuringWorth.com, Mitchell (1908)

Two Inflation-Fiscal Connection

FTPL Channel

Issue additional bonds to finance new economic stimulus

+ don't change future primary surpluses $s_t K_t$

 \Rightarrow dilutes value of existing bonds (as # of bonds is higher)

 \Rightarrow Inflation

Short-run Aggregate Demand Channel

Issue additional bonds to finance new economic stimulus + Commit to increase $s_t K_t$, so that bond value is not diluted (\Rightarrow FTPL Channel is switched off) (extra bonds are financed by extra future $s_t K_t$) If economic model is:

- $\blacksquare Ricardian \qquad \Rightarrow stimulus is neutralized by future taxes$
- Non-Ricardian ⇒ stimulus can boost demand/output

(if there is a negative output gap e.g. in NK models)

Overview

- FTPL Money Delusion vs. Short-run AD Effects
- Price Level Determination
- Neo-Fisherian vs. Stepping on the Rake
 - Government bonds with different Maturity
 - Temporary Anti-Fisherian: "Stepping on the Rake"
- Medium of Exchange Role of Money
 - Quantity Equation
 - Generalizing FTPL Equation (2 ways)
 - Friedman Rule
 - QE
 - Fiscal-Monetary Interaction
- Sargent-Wallace
- Price/Wage Stickiness (later)

Fiscal Theory of the Price Level (FTPL)

- Price level determination for a given equilibrium
 - What determines it (1/value of money)?
 - How do policy choices affect the price level/inflation
- FTPL points out the systematic link btw fiscal policy and nominal good prices
 - For a government that issues nominal debt denominated in its own currency
 - And is committed to not default on nominal liabilities (can be relaxed)
 - If fiscal policy is conducted in a certain way, can render the price level determinate
 - But even more generally: FTPL relationship always present in macro models
 - There are important fiscal requirements for "monetary" policy goals such a price stability
- In addition: Recall equilibrium selection from previous lecture
 - Bubble vs. no bubble equilibrium
 - On which asset is the bubble?

Recall Baseline Model: BruSan (AER PP 2016)

• Each heterogenous citizen $\tilde{i} \in [0, 1]$: $\mathbb{E}_t \left[\int_t^{\infty} e^{-\rho s} \left(\log c_s^{\tilde{i}} + f(g_s K_s) \right) \mathrm{d}s \right], \text{ where } K_s := \int k_s^{\tilde{i}} \mathrm{d}\tilde{i}$ $s.t. \frac{\mathrm{d}n_t^{\tilde{i}}}{n_t^{\tilde{i}}} = -\frac{c_t^{\tilde{i}}}{n_t^{\tilde{i}}} \mathrm{d}t + \mathrm{d}r_t^{\mathcal{B}} + (1 - \theta_t^{\tilde{i}})(\mathrm{d}r_t^{\mathcal{K},\tilde{i}}(\iota_t^{\tilde{i}}) - \mathrm{d}r_t^{\mathcal{B}}) \& \text{ No Ponzi}$

Each citizen operates physical capital k_t^i

• Output (net investment): $y_t^{\tilde{i}} dt = (ak_t^{\tilde{i}} - \iota_t^{\tilde{i}} k_t^{\tilde{i}}) dt$ • $\frac{dk_t^{\tilde{i}}}{k_t^{\tilde{i}}} = (\Phi(\iota_t^{\tilde{i}}) - \delta) dt + \tilde{\sigma} d\tilde{Z}_t^{\tilde{i}} + d\Delta_t^{k,\tilde{i}},$

 $(\mathrm{d} \tilde{Z}_t^{\tilde{i}}$ idiosyncratic Brownian)

- Output tax $\tau a k_t^{\tilde{i}} dt$
- No aggregate risk dZ_t
- Incomplete Markets Friction: no $\mathrm{d} \tilde{Z}_t^{\tilde{i}}$ -claims
- Government budget constraint (fiscal/monetary)

$$\underbrace{(\mu_t^{\mathcal{B}} - i_t)}_{\mu_t^{\mathcal{B}} :=} \mathcal{B}_t + \mathcal{P}_t K_t \underbrace{(\tau a - g)}_{s :=} = 0$$

Does the fiscal authority pick st or μt??
pick st: there are two corresponding μt. Δ. one on each side of the Laffer curve states and the state state states are been states.

• pick $\check{\mu}_t^{\mathcal{B}}$: doesn't have this problem

Recall Baseline Model: BruSan (AER PP 2016)

Non-Monetary	Monetary
$q_t^{\mathcal{B}} = 0$	$rac{\mathcal{B}_{0}}{\mathcal{P}_{0}}/\mathcal{K}_t = q^{\mathcal{B}} = rac{ ilde{\sigma} - \sqrt{ ho + (\mu^{\mathcal{B}} - i)}[1 + \phi(\mathbf{a} - g)]}{\sqrt{ ho + (\mu^{\mathcal{B}} - i)} + \phi ilde{\sigma} ho}$
$q_t^{\mathcal{K}} = rac{1+\phi(a-g)}{1+\phi ho}$	$q^{\mathcal{K}} = rac{\sqrt{ ho + (\mu^{\mathcal{B}} - i)} [1 + \dot{\phi}(a - g)]}{\sqrt{ ho + (\mu^{\mathcal{B}} - i)} + \phi ilde{\sigma} ho}$
$\iota = \frac{(\mathbf{a} - \mathbf{g}) - \rho}{1 + \phi \rho}$	$\iota = \frac{(a-g)\sqrt{\rho + (\mu^{\mathcal{B}} - i)} - \tilde{\sigma}\rho}{\sqrt{\rho + (\mu^{\mathcal{B}} - i)} + \phi\tilde{\sigma}\rho}}$

$$g = \Phi(\iota) - \delta = \frac{1}{\phi} \log(\iota\phi + 1) - \delta = \frac{1}{\phi} \log\left(\frac{\phi(a-g)+1}{\phi\tilde{\sigma}\rho/\sqrt{\rho+(\mu^{\mathcal{B}}-i)}+1}\right) - \delta$$

$$r^{f} = \underbrace{\left(\Phi(\iota(\mu^{\mathcal{B}}-i)) - \delta\right)}_{=g} - (\mu^{\mathcal{B}}-i) \qquad (\text{``tug-of-war'' btw. } \mu^{\mathcal{B}} \& i \)$$

$$\pi = i - r^{f} = i - [g - (\mu^{\mathcal{B}}-i)] = \mu^{\mathcal{B}} - g$$

$$\tilde{\varsigma} = (1 - \vartheta)\tilde{\sigma} = \frac{\sqrt{\rho+(\mu^{\mathcal{B}}-i)}}{\tilde{\sigma}}\tilde{\sigma} = \sqrt{\rho+(\mu^{\mathcal{B}}-i)}$$

$$\xi_{t}^{**} = e^{-\rho t} \frac{N_{0}}{N_{t}}, \quad \frac{d\xi_{t}^{**}}{\xi_{t}^{**}} = -(\rho + g) dt \ (\text{representative agent has no } d\tilde{Z}\text{-term})$$

Price Level Determination (via Wealth Effect)

•
$$\xi$$
-FTPL equation for $r^f > g$:
 $\frac{B_0}{\mathcal{P}_0} = \int_0^\infty e^{-r^f t} s e^{gt} K_0 dt = \int_0^\infty e^{(\mu^B - i)t} s K_0 dt = \frac{s K_0}{\mu^B - i}$
• ξ^{**} -FTPL equation: (cash flow + service flow-term)
 $\frac{B_0}{\mathcal{P}_0} = \int_0^\infty e^{-(\rho + g)t} s e^{gt} K_0 dt + \int_0^\infty e^{-(\rho + g)t} (1 - \vartheta)^2 \tilde{\sigma} \frac{B_0}{\mathcal{P}_0} e^{gt} dt$
 $= \frac{s K_0}{\rho} + \frac{\rho + \mu^B - i}{\rho} \frac{B_0}{\mathcal{P}_0}$

- \blacksquare Portfolio choice determines ϑ_t and with it the price level, \mathcal{P}_t when there are nominal assets
- Recall goods market clearing condition

$$C_t = \rho\left(q_t^{\mathcal{K}}\mathcal{K}_t + \frac{\mathcal{B}_t}{\mathcal{P}_t}\right) = (a - \iota_t - g)\mathcal{K}_t$$

- For a given state \mathcal{B}_0 , price level \mathcal{P}_0 is uniquely determined as long as fiscal policy is "active" (has its own goals)
 - $\blacksquare \mathcal{P}_t \text{ too high} \rightarrow \text{total bond wealth } \mathcal{B}_t/\mathcal{P}_t \text{ too low} \rightarrow \text{insufficient goods demand} \rightarrow \mathcal{P}_t \text{ falls}$
 - $\blacksquare \ \mathcal{P}_t \text{ too low} \rightarrow \text{total bond wealth } \mathcal{B}_t/\mathcal{P}_t \text{ too high} \rightarrow \text{excess goods demand} \rightarrow \mathcal{P}_t \text{ falls}$
 - Except if fiscal policy $s_{>t}$ is "passive" and reacts sufficiently strongly, i.e., ϑ_t reacts to \mathcal{P}_t

Price Level Determination: Active/Passive Fiscal Policy

- "Passive" fiscal policy s>t that does not pursue its own goal and hence ϑt, reacts sufficiently strong to Pt to support other equilibria [Leeper terminology]
 - If price level rises by x%, then real debt declines by x%, which fiscal reaction justifies by lowering primary surpluses by x%
 - Example: fiscal policy $s_t = \alpha_s \vartheta_t$, then $\vartheta_t = \int_t^\infty \rho e^{-\rho(\tau-t)} s_\tau d\tau = \int_t^\infty \rho e^{-\rho(\tau-t)} \alpha_s \vartheta_t d\tau$ Has many solutions since $\vartheta_t = \vartheta_0 e^{(\rho-\alpha)t}$ for any ϑ_0 (they also satisfy the transversality condition $e^{-\rho t} \vartheta_t \to 0$) Hence, for this fiscal policy any initial portfolio weight ϑ_0 and price level \mathcal{P}_0 are consistent with "some" equilibrium
- "Active" fiscal policy \Rightarrow uniqueness Fiscal authority pursues its own goal and does not react strongly to different \mathcal{P}_t
- Out-off-equilibrium fiscal policies to rule out possible non- or bubble-decaying equilibria
 - Out-off equilibrium fiscal support to secure minimum of $\underline{\vartheta}$ a la Obstfeld-Rogoff (see Lecture 10)

Remark: Price Level Determination

- An "active" fiscal policy is only feasible for the government if
 - Government's nominal debt represents liability to something it can create out of FIAT
 - i.e. it does not need to expend real resources to honor this liability
 - All other agents must expend real resources to service their nominal debt
 - Remark: ... but it is not required that
 - Taxes are payable in money
 - Government is a large player
- Government debt represents net worth for private sector.

Effectiveness of Monetary Policy to Impact Price Level

- Monetary Policy can be maximally effective ("Monetary Dominance") if fiscal policy generates indeterminancy (multiple possible price levels) (i.e. FTPL is switched off, e.g. via passive fiscal policy rule)
 - In representative agent setting: Passive fiscal policy rule (real surplus react sufficiently to real value of debt) [Leeper terminology] is Ricardian, i.e. it has no real impact [Woodford terminology]
- Monetary Policy has power since it can select an equilibrium
 - e.g. via the Taylor Rule
 - $i_t = \phi_0(\tilde{\sigma}) + \phi_\pi(\pi_t \pi^*(\tilde{\sigma}))$ (no output gap reaction with flexible prices)
 - One reasonable equilibrium
 - All others are explosive and seem implausible
 - Due to Taylor Principle: $\phi_\pi > 1$
- Remark: Monetary Dominance, i.e. passive fiscal policy + MoPo-Taylor rule, is implicitly assumed in most NK-DSGE models.

Monetary vs. Fiscal Dominance

Monetary dominance

Monetary tightening leads fiscal authority to reduce fiscal deficit

Fiscal dominance

- Interest rate increase does not reduce primary fiscal deficit
- ... only lead to higher inflation

Game of chicken

See YouTube video 4, minute 4:15

Overview

- FTPL Money Delusion vs. Short-run AD Effects
- Price Level Determination
- Neo-Fisherian vs. Stepping on the Rake
 - Government Bonds with Different Maturity
 - Temporary Anti-Fisherian: "Stepping on the Rake"
- Medium of Exchange Role of Money
 - Quantity Equation
 - Generalizing FTPL Equation (2 ways)
 - Friedman Rule
 - QE
 - Fiscal-Monetary Interaction
- Sargent-Wallace
- Price/Wage Stickiness (later)

Inflation – Fiscal Link for the US

Fisher equation: $i_t = r_t^f + \pi_t$

Erdogan's experiment with Turkey (until 2023)

• Unexpected permanent increase in i_t at t = 0

1. Option "Pure MoPo": keep $\check{\mu}^{\mathcal{B}}_t$ constant, i.e., $\mu^{\mathcal{B}}_t$ increases

 \Rightarrow increases inflation (one-for-one)

"Neo-Fisherian" – "super-neutrality of money (growth)"

2. Option "Reacting Fiscal Pol": keep $\mu_t^{\mathcal{B}}$ constant, i.e. $\check{\mu}_t^{\mathcal{B}}$ decreases $\Rightarrow r^f = \underbrace{(\Phi(\iota(\check{\mu}^{\mathcal{B}}) - \delta))}_{=g} - \check{\mu}^{\mathcal{B}}$ due to the growth effect inflation decreases (slightly)

Introducing Long-term Government Bonds

Long-term bond

- yields fixed coupon interest rate on face value $F^{(i,m)}$
- Matures at random time with arrival rate 1/m
- Nominal price of the bond $P_t^{\mathcal{B}(i,m)}$
- Nominal value of all bonds outstanding of a certain maturity:

$$\mathcal{B}_t^{(m)} = \mathcal{P}_t^{\mathcal{B}(i,m)} \mathcal{F}^{(i,m)}$$

• Nominal value of all bonds $\mathcal{B}_t = \sum_m \mathcal{B}_t^{(m)}$

Special bonds

- Reserves: $\mathcal{B}_t^{(0)}$ and note $\mathcal{P}_t^{\mathcal{B}(0)} = 1$ (long-term but floating interest rate)
- Consol bond: $\mathcal{B}_t^{(\infty)}$

Sims' Stepping on the Rake: "Bond Reevaluation Effect"

- Unexpected permanent increase in i_t⁽⁰⁾ at t = 0 for all t > 0
 ⇒ nominal value B_t^(m>0) of any long-term bond declines
 1. Option "Pure MoPo": keep s_t constant, i.e., "debt growth" increases, θ_t is constant and so is q^B (aside s_t/q_t^B also stays constant)
 At t = 0 on impact: as all B₀^(m>0) decline ⇒ P₀ has to jump down
 - For t > 0: inflation π_t is higher like in Neo-Fisherian setting (with price stickiness like dotted curve)

Sims' Stepping on the Rake: "Bond Reevaluation Effect"

- Unexpected permanent increase in $i_t^{(0)}$ at t = 0 for all t > 0
 - \Rightarrow nominal value $\mathcal{B}_t^{(m>0)}$ of any long-term bond declines
 - 1. Option "Pure MoPo": keep s_t constant, i.e., "debt growth" increases, ϑ_t is constant and so is $q^{\mathcal{B}}$ (aside $s_t/q_t^{\mathcal{B}}$ also stays constant)
 - At t = 0 on impact: as all $\mathcal{B}_0^{(m>0)}$ decline $\Rightarrow \mathcal{P}_0$ has to jump down
 - For t > 0: inflation π_t is higher like in Neo-Fisherian setting (with price stickiness like yellow curve)
 - 2. Option "Reacting Fiscal Pol": keep $\mu_t^{\mathcal{B}}$ (growth rate of nominal bond value) constant \Rightarrow raise $s_t \Rightarrow \vartheta_t$ and $q_t^{\mathcal{B}}$ go up.
 - At t = 0 on impact: as all $\mathcal{B}_t^{(m>0)}$ decline $\Rightarrow \mathcal{P}_0$ has to jump down by more than option $\mathbf{1}$
 - For t > 0: inflation π_t is higher like in Neo-Fisherian setting
- In sum, "Stepping on the Rake" only changes inflation (price drop) at t = 0. ... only with price stickiness (price drop down is smoothed out).

Overview

- FTPL Money Delusion vs. Short-run AD Effects
- Price Level Determination
- Neo-Fisherian vs. Stepping on the Rake
 - Government Bonds with Different Maturity
 - Temporary Anti-Fisherian: "Stepping on the Rake"
- Medium of Exchange Role of Money
 - Quantity Equation
 - Generalizing FTPL Equation (2 ways)
 - Friedman Rule
 - QE
 - Fiscal-Monetary Interaction
- Sargent-Wallace
- Price/Wage stickiness (later)

ADD "Medium of Exchange" to Store of Value

- Store of Value Role (only)
 - Bond (T-Bill) = Money
 - **FTPL equation** determines price level
- Add Medium of Exchange Role
 - Cash-in-advance constraint, transaction cost, shopping time model,
 - $\Rightarrow r^{\mathcal{M}} < r^{\mathcal{B}}$ ("money convenience yield")
 - Quantity equation $\mathcal{M}_t \nu \geq \mathcal{P}_t Y_t$ determines price level (if it binds)
 - Add money as an additional asset to the model
 - Monetarists assume that velocity ν is constant (sluggish)
- Milton Friedman (1961): "inflation is always and everywhere a monetary phenomenon"
- Sims (1994): "In a fiat-money economy, inflation is a fiscal phenomenon, even more fundamentally than it is a monetary phenomenon".

Medium of Exchange: Additional Model Elements

Bond and Money

- Money is medium of exchange as well as store of value (but worse store than bond)
- Nominal quantity \mathcal{M}_t (cash, CBDC, reserves)
- $\blacksquare \ \mbox{Initial stock } \mathcal{M}_0 > 0$
- Evolution: $d\mathcal{M}_t = \mu_t^{\mathcal{M}} dt$ controlled by monetary authority
- Does not pay interest (or lower interest on reserves)
- **Real** value (real money balances) $\frac{\mathcal{M}_t}{\mathcal{P}_t} =: q_t^{\mathcal{M}} \mathcal{K}_t$

• Share notations: $\vartheta_t = \frac{q_t^{\mathcal{B}} + q_t^{\mathcal{M}}}{q_t^{\mathcal{K}} + q_t^{\mathcal{H}} + q_t^{\mathcal{M}}}$ fraction of nominal to total wealth

$$\vartheta_t^{\mathcal{M}} = \frac{q_t^{\mathcal{M}}}{q_t^{\mathcal{B}} + q_t^{\mathcal{M}}}, \text{ i.e., } \vartheta_t \vartheta_t^{\mathcal{M}} = \text{money as a fraction of total net worth}$$

•
$$\vartheta_t^{\mathcal{B}} = \frac{q_t}{q_t^{\mathcal{B}} + q_t^{\mathcal{M}}}$$
, i.e., $\vartheta_t \vartheta_t^{\mathcal{B}} =$ fraction of total net worth

- Monetary authority transfers seigniorage to fiscal authority
- Gov. Budget constraint: (fiscal vs. monetary)

$$(\mu_t^{\mathcal{B}} - i_t)\mathcal{B}_t = \mathcal{P}_t(s_t + \mu_t^{\mathcal{M}}q_t^{\mathcal{M}})\mathcal{K}_t$$

where s_t is primary surplus and $\mu_t^{\mathcal{M}} q_t^{\mathcal{M}}$ seigniorage per unit of K_t

Medium of Exchange – Transaction Role

Overcome double-coincidence of wants

Models of Medium of Exchange

Reduced form models

• Cash in advance: $T_t = \nu \frac{M_t}{\mathcal{P}_t}$

Only assets $j \in \mathcal{M}$ with money-like features

$$egin{aligned} c_t^i &\leq \sum_{j \in \mathcal{M}}
u^j heta_t^{j,i} n_t^i & ext{with velocity }
u >
ho \end{aligned}$$

Shopping time models
$$c = (c^c, I)$$

Money in the utility function consume money $u(c, \mathcal{M}/\mathcal{P}) = u(c, \theta^{j \in \mathcal{M}} n)$

CES

DiTella extension of BruSan2016

- New Keynesian Models
- No satiation point
- New Monetary Economics

For generic setting encompassing all models: see Brunnermeier-Niepelt 2018

Medium of Exchange: Additional Model Elements

- CIA binds
 - Yes \Rightarrow Quantity Equation $\mathcal{P}_t T_t = v \mathcal{M}_t$ determines \mathcal{P}_t
 - No & $\mu_t^{\mathcal{M}} = \mu_t^{\mathcal{B}} i_t \Rightarrow$ price level is determined as in "nominal gov. bond model"

Stochastic Maximum Principle

• Notation:
$$oldsymbol{ heta}_t = \int heta_t^{(m)} \mathrm{d}m, oldsymbol{\mathcal{B}} = \int \mathcal{B}^{(m)} \mathrm{d}m$$
, (Note: $\mathcal{M}
eq \mathcal{B}^{(0)}$)

Agent's problem:

$$\max_{\boldsymbol{\theta}_t, c} \left[\int_0^\infty e^{-\rho t} u(c_t) \mathrm{d}t \right], s.t. \frac{\mathrm{d}n_t}{n_t} = -\frac{c_t}{n_t} \mathrm{d}t + \mathrm{d}r_t^{n^*} + (\boldsymbol{\theta}_t - \boldsymbol{\theta}_t^*) \mathrm{d}r_t^{\boldsymbol{\mathcal{B}}}, \text{and } \boldsymbol{c}_t \leq \nu \vartheta_t^{\mathcal{M}} \boldsymbol{n}_t$$

Hamiltonian (in consumption numeraire):

$$H_t = e^{-\rho t} u(c_t) + \xi_t \mu_t^n n_t - \varsigma_t \xi_t \sigma_t^n n_t - \tilde{\varsigma_t} \xi_t \sigma_t^n n_t + \lambda_t^{\mathcal{M}} \xi_t n_t \left(\nu \theta_t^{\mathcal{M}} - \frac{c_t}{n_t} \right)$$

First order conditions:

$$\begin{cases} e^{-\rho t} u'(c_t) = \xi_t (1 + \lambda_t^{\mathcal{M}}) \\ r_t^{n^*} - r_t^{\mathcal{B}^{(m)}} = \varsigma_t \left(r_t^{n^*} - r_t^{\mathcal{B}^{(m)}} \right), & \text{for bonds} \\ r_t^{n^*} - r_t^{\mathcal{M}} = \varsigma_t \left(r_t^{n^*} - r_t^{\mathcal{M}} \right) + \nu \lambda_t^{\mathcal{M}}, & \text{for money} \end{cases}$$

Understanding rs

$$r^{f**} = \rho + \gamma \mu_t^C - \underbrace{\frac{1}{2} \gamma(\gamma + 1) [(\sigma_t^c)^2 + }_{\substack{\text{idio risk} \\ + (\tilde{\sigma}_t^c)^2]}}^{\text{idio risk}}$$
(rep. agent risk-free rate)
$$r^f = - \underbrace{\lambda_t^M \nu}_{\Delta i_t}$$
(return on money)

Derive FTPL Equation in Setting with (Narrow) Money

Two ways to write FTPL equation

$$\frac{\mathcal{B}_t + \mathcal{M}_t}{\mathcal{P}_t} = \mathbb{E}_t \int_t^T \frac{\xi_s}{\xi_t} s_s \mathcal{K}_s \mathrm{d}s + \mathbb{E}_t \int_t^T \frac{\xi_s}{\xi_t} \Delta i_s \frac{\mathcal{M}_s}{\mathcal{P}_s} \mathrm{d}s + \mathbb{E}_t \frac{\xi_T}{\xi_t} \frac{\mathcal{B}_T + \mathcal{M}_T}{\mathcal{P}_T} \\ \frac{\mathcal{B}_t}{\mathcal{P}_t} = \mathbb{E}_t \int_t^T \frac{\xi_s}{\xi_t} s_s \mathcal{K}_s \mathrm{d}s + \mathbb{E}_t \int_t^T \frac{\xi_s}{\xi_t} \mu_s^{\mathcal{M}} \frac{\mathcal{M}_s}{\mathcal{P}_s} \mathrm{d}s + \mathbb{E}_t \frac{\xi_T}{\xi_t} \frac{\mathcal{B}_T}{\mathcal{P}_T}$$

Take difference:

$$\frac{\mathcal{M}_t}{\mathcal{P}_t} = \mathbb{E}_t \int_t^T \frac{\xi_s}{\xi_t} (\Delta i_s - \mu_s^{\mathcal{M}}) \frac{\mathcal{M}_s}{\mathcal{P}_s} \mathrm{d}s + \mathbb{E}_t \frac{\xi_T}{\xi_t} \frac{\mathcal{M}_T}{\mathcal{P}_T}$$

(may contain bubble term when take $\mathcal{T}
ightarrow \infty$)

Friedman Rule & The "Optimal" Inflation Rate

- Money better medium of exchange, i.e. transaction role services.
- ... but worse as store of value, if $i_t > 0$ since money pays no/less interest $i^{\mathcal{M}} = 0$
- Distortionary, as agents economize on money holding, while money is socially costless to produce.
- Friedman Rule:

Adjust the inflation rate s.t. $r_t^{\mathcal{M}} = r_t^{\mathcal{B}}$, i.e., $\pi_t^* = -r_t^{\mathcal{B}} \forall t$ (which depends on $\mu_t^{\mathcal{B}}$)

- Remarks:
 - Lucas (1987): "one of the few legitimate 'free lunches' economics has discovered in 200 years of trying."
 - Friedman Rule is not optimal in our setting, as there is an optimal degree μ^B of "bubble mining" that also determines optimal inflation (see welfare lecture).
 - inflation tax lowers real return on gov. bond and boost investment/growth rate (Tobin effect).
 - Inflation tax lowers idiosyncratic risk-sharing, which lowers citizens' utility.

Quantitative Easing (QE)

- Assume $\mu_t^{\mathcal{M}} = \mu_t^{\mathcal{B}}$ for all t
- At t = 0 QE in form of an unexpected swap of $\mathcal{B}^{(0)}$ -bonds (T-Bill) for money \mathcal{M}
- **QE Proposition:** T-Bill QE leads to positive price level jump. Suppose \mathcal{P}_t reacts less, so that real balances $\frac{\mathcal{M}_t}{\mathcal{P}_t}$ expand
 - \Rightarrow Relaxes CIA constraint and
 - \Rightarrow Relaxes CIA constraint and
 - \Rightarrow permanently lowers Δi (if CIA was binding beforehand)
 - \Rightarrow lowers "money seigniorage"
 - \Rightarrow upward jump in the price level (inflation) by

$$\frac{\mathcal{B}_t + \mathcal{M}_t}{\mathcal{P}_t} = \mathbb{E}_t \int_t^T \frac{\xi_s}{\xi_t} s_s \mathcal{K}_s \mathrm{d}s + \mathbb{E}_t \int_t^T \frac{\xi_s}{\xi_t} \Delta i_s \frac{\mathcal{M}_s}{\mathcal{P}_s} \mathrm{d}s + \mathbb{E}_t \frac{\xi_T}{\xi_t} \frac{\mathcal{B}_T + \mathcal{M}_T}{\mathcal{P}_T}$$

The quantity equation (with fixed velocity) $\frac{M_t}{P_t} = \frac{C_t}{\nu}$ would also lead to upward jump of the price level.

Fiscal and Monetary Interaction

Monetary dominance

Monetary tightening leads fiscal authority to reduce fiscal deficit

Fiscal dominance

- Interest rate increase does not reduce primary fiscal deficit
- ... only lead to higher inflation

Game of chicken

See YouTube video 4, minute 4:15

Fiscal and Monetary Interaction

- Monetary authority sets $i_t, \mu_t^{\mathcal{M}}$
- Fiscal authority sets $\mu_t^{\mathcal{B}}$... if it undos interest rate, simply assume it sets $\check{\mu}_t^{\mathcal{B}}$
- $\mu_t^{\mathcal{M}} = \mu_t^{\mathcal{B}}$ money to bond ratio stays the same \Rightarrow steady state analysis
 - CIA binds
 - 👖 CIA doesn't bind
- $\mu_t^{\mathcal{M}} \neq \mu_t^{\mathcal{B}}$ not a steady state (except if the CIA constraint is slack throughout) as $\mathcal{M}_t/\mathcal{B}_t$ ratio evolves over time
 - If $\mu_t^{\mathcal{M}} > \mu_t^{\mathcal{B}}$, then convergence over time to steady-state with only money. The real allocation might converge there in finite time if the CIA constraint is non-binding in this long-run outcome (i.e. if idiosyncratic risk is large relative to monetary friction.)
 - If $\mu_t^{\mathcal{M}} < \mu_t^{\mathcal{B}}$ for all *t* (Outcome depends on CIA/money in utility specification): With CIA constraint on consumption, in the long run ϑ_t must converge to 1 ($\mathcal{P}_t \rightarrow 0$). If CIA holds in the extreme case: possible solution is demonetization & starvation (consumption & output converges to zero), bonds would become only store of value.

Modification 1: Allow for (less efficient) barter trades without money, then eventually inflation is determined by the fiscal side.

Modification 2: velocity can increase at a cost

Modification 3: Money in Utility function (it depends whether $u(\frac{m}{P} = 0) = -\infty$ or not ... and marginal utility

Fiscal and Monetary Interaction

- Monetary authority sets $i_t, \mu_t^{\mathcal{M}}$
- Fiscal authority sets $\mu_t^{\mathcal{B}}$... if it undos interest rate, simply assume it sets $\check{\mu}_t^{\mathcal{B}}$

Prelude to Sargent and Wallace

• Central bank can temporarily set $\mu_t^{\mathcal{M}} < \mu_t^{\mathcal{B}}$. Inflation will be low temporarily because the CIA determines the price level (quantity equation), but eventually the fiscal side takes over and raises $\mu_t^{\mathcal{M}}$ (fiscal dominancy in SW).

Can the monetary authority contain inflation, e.g. by setting $\mu_t^{\mathcal{M}} < 0$, if fiscal authority sets a high $\check{\mu}_t^{\mathcal{B}}$?

Since central bank has no taxing power, the monetary authority can only set $\mu_t^{\mathcal{M}} < 0$ until central balance sheet is used up.

Overview

- FTPL Money Delusion vs. Short-run AD Effects
- Price Level Determination
- Neo-Fisherian vs. Stepping on the Rake
 - Government Bonds with Different Maturity
 - Temporary Anti-Fisherian: "Stepping on the Rake"
- Medium of Exchange Role of Money
 - Quantity Equation
 - Generalizing FTPL Equation (2 ways)
 - Friedman Rule
 - QE
 - Fiscal-Monetary Interaction
- Sargent-Wallace
- Price/Wage Stickiness (later)

Relationship btw FTPL and Sargent and Wallace (1981)

- Sargent and Wallace (SW) point out that "even in an economy that satisfies monetarist assumptions [...] monetary policy cannot permanent control [...] inflation"
 - They consider an economy in which \mathcal{P}_t is fully determined by money demand $\nu \mathcal{M}_t = \mathcal{P}_t Y_t$
 - but the fiscal authority is "dominant": sets *deficits* independently of monetary policy actions
- SW emphasize seigniorage from money creation
 - fiscal needs determine the total present value of seigniorage
 - if monetary authority provides less now, it will be forced to provide more later
- Similarity with FTPL: SW also emphasize importance of fiscal policy for inflation
 Differences to FTPI
 - Seigniorage plays important role in SW but irrelevant for FTPL
 - FTPL about tax backing (primary surplues), SW about funding deficits (negative surpluses)
 - SW about consistency of policy choices along an equilibrium path (no off-equilibrium actions)
 - price level determination in SW based on money demand, doesn't work with *i*-policy.

Recall: Model Extension with Money

Add money as a third asset

- nominal quantity \mathcal{M}_t , evolution $d\mathcal{M}_t = \mu_t^{\mathcal{M}} \mathcal{M}_t dt$
- initial stock $M_0 > 0$ given, $\mu_t^M \ge 0$ controlled by monetary authority
- does not pay interest
- real value $q_t^{\mathcal{M}} := \mathcal{M}_t / \mathcal{P}_t$

Households face a payment constraint in production $vm_t^i \ge \mathcal{P}_t y_t^i (v > \rho)$ (as in Merkel (2020) – isomorphic to consumption cash-in-advance constraint but formally simpler)

• if binding, $\mathcal{P} = v\mathcal{M}$ in the aggregate \Rightarrow tight link between money & price level

• Monetary authority transfers seigniorage $s_t := \mu_t^M q_t^M$ (per K_t) to fiscal authority

Budget constraint of fiscal authority:

$$(i_t - \mu_t^{\mathcal{B}})\mathcal{B}_t = \mathcal{P}_t(s_t + s_t)\mathcal{K}_t \Rightarrow \mu_t^{\mathcal{B}} = i_t - \frac{s_t + s_t}{q_t^{\mathcal{B}}}$$

New element is seigniorage income s_t (per K_t)

Model Solution for Binding Payment Constraint

- Let's assume that in equilibrium
 - 1 the payment constraint is always binding
 - **2** surpluses satisfy $s_t = \underline{s}, \underline{s} \leq 0$ (constant deficit-GDP ratio)
 - 3 $\nu > \rho$ (given log-utility)

Then nominal wealth shares must satisfy:

$$\begin{split} \vartheta_t \vartheta_t^M &:= \frac{q_t^M}{q_t^M + q_t^B + q_t^K} = \rho/\nu \quad \text{(from goods market clearing condition)} \\ \vartheta_t \vartheta_t^B &:= \frac{q_t^B}{q_t^M + q_t^B + q_t^K} \\ &= \int_t^\infty \rho e^{-\rho(t'-t)} (s_{t'} + \vartheta_{t'}) \mathrm{d}t' = \underbrace{\underline{s}}_{<0} + \int_t^\infty \rho e^{-\rho(t'-t)} \vartheta_{t'} \mathrm{d}t' \end{split}$$

A Fiscally Dominant Regime after T

- Suppose after time $T < \infty$ the fiscal authority can take control of $\mu_t^{\mathcal{M}}$.
- Fiscal authority chooses seigniorage to keep debt-GPD ratio constant, i.e.

$$\delta_t = \hat{\delta}(\vartheta^{\mathcal{B}}_T) := -\underline{s} + \vartheta_T \vartheta^{\mathcal{B}}_T, \quad t \ge T$$

(there are limites on feasible seigniorage but let's ignore this for simplicity)

- For t ≤ T, the monetary authority chooses (constant) μ^M independently
 then also s_t = μ^Mq_t^M = μ^M(a g)/ν =: s is controlled by the monetary authority
- "Unpleasant Arithmetic" Proposition:

Tight money now means higher inflation eventually.

specifically: the (constant) inflation rate over [T,∞) is strictly decreasing in µ^M over [0, T]

Why Does the Sargent-Wallace Proposition Hold?

Iterating government budget constraint forward in time and dividing by total wealth yields:

$$\vartheta_{\mathcal{T}}\vartheta_{\mathcal{T}}^{\mathcal{B}} = \vartheta_{0}\vartheta_{0}^{\mathcal{B}} - \int_{0}^{\mathcal{T}} \rho e^{-\rho t} (\underline{s} + s) \mathrm{d}t$$

- Lower money µ^M_t over [0, T] ⇒ lower seigniorage transfers s = µ^M(a g)/ν ⇒ debt grows faster
- Higher debt at *T*: need larger seigniorage thereafter to cover interest payments:
 recall
 â(θ^B_T) = −<u>s</u> + θ_T θ^B_T is increasing in θ^B_T

Illustration of Unpleasant Arithmetic

Monetary Dominance

Suppose $T = \infty$: monetary authority is always in control of the money supply

- Is there an equilibrium? (suppose also $\vartheta \neq \vartheta_0 \vartheta_0^{\mathcal{B}} \underline{s}$)
 - not with constant deficit/ K_t -ratio $s_t = \underline{s}$
 - but: a constant deficit is not necessarily feasible policy

Two cases

- 1 if $s > \vartheta_t \vartheta_t^{\mathcal{B}} \underline{s}$, $s_t = \underline{s} < 0$ remains feasible
 - but fiscal authority will absorb money over time, effective money suppply is smaller than \mathcal{M}_t
 - fiscal authority controls inflation

(e.g. if real debt to K_t ratio is kept constant, outcomes as if $\delta = \vartheta_0 \vartheta_0^{\mathcal{B}} - \underline{s}$)

- 2 if $\beta < \vartheta_t \vartheta_t^{\mathcal{B}} \underline{s}$, s_t has to rise to avoid default on nominal bonds
 - fiscal authority effectively faces an "intertemporal budget constraint"
 - e.g. smallest constant primary surpluse (per K_t is $s = \vartheta_0 \vartheta_0^{\mathcal{B}} s$

Remark:

Here, gov. debt is like real/foreign currency debt - very different from FTPL

Overview

- FTPL Money Delusion vs. Short-run AD Effects
- Price Level Determination
- Neo-Fisherian vs. Stepping on the Rake
- Medium of Exchange Role of Money
 - Quantity Equation
 - Generalizing FTPL Equation (2 ways)
 - Friedman Rule
 - QE
 - Fiscal-Monetary Interaction
- Sargent-Wallace
- Price/Wage Stickiness (later)
 - Li-Merkel (2023)
 - $q_t^{\mathcal{B}}$ is sticky and $q_t^{\mathcal{K}}$ more volatile
 - Alexandrov-Brunnermeier (2023) (Price vs. Financial Stability)