Eco529: Modern Macro, Money, and International Finance Lecture 02: Optimization, Consumption, and Portfolio Choice

Markus Brunnermeier

Princeton University

Fall, 2023

Overview of Lecture 02

- Why continuous time modeling (big picture)?
- Basic Itô Calculus
- Single-agent Consumption-Portfolio Choice
- Stochastic Control Methods in Continuous Time
 - Hamilton-Jacobi-Bellman (HJB) Equation
 - Stochastic Maximum Principle (Pontryagin)
 - Martingale Method

Why Continuous Time Modeling?

Time aggregation

- Data come in different frequency
 - GDP quarterly
 - High frequency financial data

Consumption

- Same IES within and across periods
- Discrete time consumption
 - \blacksquare IES/RA within period = $\infty,$ but across periods = $1/\gamma$
- Optimal stopping problems no interger issues
- Sharp distinction between stock and flow (rate)
 - Beginning of period = end of period wealth
 - E.g. consumption = time-preference rate * end of period wealth

Brownian Motion dZ

Brownian Motion as a binomial tree over Δt .

 $\begin{smallmatrix} & & & \sigma \sqrt{\Delta t} \\ 0 & & \\ &$

• More steps with shrinking step size: $h_n = \sigma \sqrt{\Delta t/n}$

Itô Processes: Characterization, Skewness over Δt

Itô processes ... fully characterized by drift and volatility

 $\mathrm{d}X_t = \mu(X_t, t)\mathrm{d}t + \sigma(X_t, t)\mathrm{d}Z_t$

- Arithmetic Itô's Process: $dX_t = \mu_{\mathbf{X},t} dt + \sigma_{\mathbf{X},t} dZ_t$
- Geometric Itô's Process: $dX_t = \mu_t^X X_t dt + \sigma_t^X X_t dZ_t$

Characterization for full volatility dynamics on Prob.-space

- Discrete time: Probability loading on states conditional expectations E[X|Y] difficult to handle
- Cts. time Loading on a Brownian Motion dZ_t captured by σ

Normal distribution for dt, yet with skewed distribution for $\Delta t > 0$

If σ_t is time-varying
E.g. from normal-dt to log-normal-Δt and vice versa (geometric dX_t.)

Continuity of Itô Processes

- Continuous path
 - Information arrives continuously "smoothly" not in lumps
 - Implicit assumption: can react continuously to continuous info flow
 - Never jumps over a specific point, e.g. insolvency point
 - Simplifies numerical analysis:
 - Only need change from grid-point to grid-point (since one never jumps beyond the next grid-points)
 - No default risk: Can continuously delever as wealth declines
 - Might embolden investors ex-ante
 - Collateral constraint
 - Discrete time: $b_t R_{t,t+1} \leq \min\{q_{t+1}\}k_t$
 - Cts. time: $b_t \leq (p_t + \underline{d}p_t)k_t$

For short-term debt - not for long-term debt ... or if there are jumps

- Levy processes ... with jumps
 - Still price of risk * risk, but not linear

Conditional Expectations for Itô

- in discrete time: e.g. $\mathbb{E}_t[V(\eta)]$
 - \blacksquare Need function $V(\eta)$ across all states η
 - \blacksquare Simulate η to obtain probability weights for η all realizations

• in continuous time with Itô: $\mathbb{E}[dV(\eta)] = V'(\eta)\mu_{\eta}dt + \frac{1}{2}V''(\eta)\sigma_{\eta}^{2}dt$

 \blacksquare Just need the two neighboring grid points instead of the whole function $\rightarrow V''(\eta)$

$$\rightarrow \eta$$

• $V'(\eta)$ is approximated by $\frac{V(\eta+\Delta)-V(\eta)}{\Delta}$ or $\frac{V(\eta)-V(\eta-\Delta)}{\Delta}$; $V''(\eta)$ by $\frac{V(\eta+\Delta)-V(\eta)-(V(\eta)-V(\eta-\Delta))}{\Delta^2}$;

Similar for price q(η)
 Return equations: requires only slope of price function q(η) to determine amplification instead of whole price function across all η in discrete time.

Dynamic Portfolio Choice in Continuous Time

Linearize

kills σ -term, all assets are equivalent

- 2nd order approximation kills time-varying σ
- Log-linearize à la Campbell-Shiller
- As $\Delta t \rightarrow 0$ (log) returns converge to normal distribution
 - Constantly adjust the approximation point
 - Nice formula for portfolio choice for Ito process

Consumption Choice & Wealth (Share) Dynamics

Consumption choice

- Nice Process
 - consumption/wealth ratio is constant for log-utility, e.g. for log-utility $c_t = \rho N_t$
 - Beginning = end of period net worth/wealth
- Evolution of state variables wealth (shares)/distribution
 - Nice Characterization
 - Evolution of distributions (e.g. wealth distribution) characterized by Kolmogorov Forward Equation (Fokker-Planck equation)

Overview of Lecture 02

- Why continuous time modeling (big picture)?
- Basic Itô Calculus
- Single-agent Consumption-Portfolio Choice
- Stochastic Control Methods in Continuous Time
 - Hamilton-Jacobi-Bellman (HJB) Equation
 - Stochastic Maximum Principle (Pontryagin)
 - Martingale Method

Notations for Itô's Process

• Arithmetic Itô's Process: $dX_t = \mu_{\mathbf{X},t} dt + \sigma_{\mathbf{X},t} dZ_t$

- X in the subscript of μ and σ
- $\mu_{X,t}$ and $\sigma_{X,t}$ (can be) time varying

• Geometric Itô's Process: $dX_t = \mu_t^X X_t dt + \sigma_t^X X_t dZ_t$

- X in the superscript of μ and σ .
- Example: Stock goes up 32% or down 32% over a year (256 trading days):

$$\sigma^{X} = \frac{32\%}{\sqrt{256}} = 2\%$$

Note: This is not a general convention, but used during this course.

Basics of Itô's Calculus

Itô's Lemma in geometric notation:

$$df(X_t) = \left[f'(X_t) \mu_t^{\mathsf{X}} \chi_t + \frac{1}{2} f''(x) \left(\sigma_t^{\mathsf{X}} \chi_t \right)^2 \right] \mathrm{d}t + f'(X_t) \sigma_t^{\mathsf{X}} \chi_t \mathrm{d}Z_t$$

• Example: SDF's volatility for CRRA utility: $u(c) = \frac{c^{1-\gamma}-1}{1-\gamma}, u'(c) = c^{-\gamma}$

$$\xi_t = e^{-\rho t} \frac{c_t^{-\gamma}}{c_0^{-\gamma}} \Rightarrow \sigma_t^{\xi} = -\gamma \sigma_t^c$$

Itô product rule: (stock price * exchange rate)

$$\frac{d(X_tY_t)}{X_tY_t} = (\mu_t^X + \mu_t^Y + \sigma_t^X\sigma_t^Y)\mathrm{d}t + (\sigma_t^X + \sigma_t^Y)\mathrm{d}Z_t$$

Itô ratio rule:

$$\frac{d(X_t/Y_t)}{X_t/Y_t} = [\mu_t^X - \mu_t^Y + \sigma_t^Y(\sigma_t^Y - \sigma_t^X)] dt + (\sigma_t^X - \sigma_t^Y) dZ_t$$

Single-agent Consumption-Portfolio Choice

• Choose consumption $\{c_t\}_{t=0}^{\infty}$ and portfolio weights to $\{\theta_t\}_{t=0}^{\infty}$ to maximize:

$$\mathbb{E}\left[\int_{0}^{\infty}e^{-
ho t}u(c_{t})dt
ight], \quad ext{with } u(c)=rac{c^{1-\gamma}-1}{1-\gamma}$$

Subject to:

Net worth evolution

$$\forall t > 0 : \mathrm{d}n_t = -c_t \mathrm{d}t + n_t [\theta_t r_t \mathrm{d}t + (1 - \theta_t) \mathrm{d}r_t^a]$$

• A solvency constrant: $\forall t > 0, n_t \ge 0$.

alternatively, a "no Ponzi condition" leads to identical solution

Beliefs about:

- r_t risk-free rate
- dr_t^a risky asset return process with risk premium δ_t^a : $dr_t^a = (r_t + \delta_t^a)dt + \sigma_t^a dZ_t$
- Take prices/returns as given

State Space

Suppose returns are a function of state variable η_t :

$$r_t = r(\eta_t), \quad \delta_t^a = \delta^a(\eta_t), \quad \sigma_t^a = \sigma^a(\eta_t)$$

• η_t evolves according to a diffusion process:

$$\mathrm{d}\eta_t = \mu_t^{\eta}(\eta_t)\eta_t \mathrm{d}t + \sigma_t^{\eta}(\eta_t)\eta_t \mathrm{d}Z_t$$

- with initial state η_0 given
- Then decision problem has two state variables:
 - n_t controlled state
 - η_t external state
- For each initial state (n_0, η_0) we have a separate decision problem

Example: Functional Forms

• η -evolution (implies $\eta_t \in (-1, 1)$)

$$\mu^{\eta}\eta = \mu_{\eta} = -\phi\eta, \qquad \sigma_{\eta}(\eta) = \sigma(1-\eta^2)$$

Asset returns:

$$r(\eta) = r^{0} + r^{1}\eta, \quad \delta^{a}(\eta) = \delta^{0} - \delta^{1}\eta, \quad \sigma^{a}(\eta) = \sigma^{0} - \sigma^{1}\eta$$

• With parameters: $r^0, r^1, \delta^0, \delta^1, \sigma^0, \sigma^1 \ge 0$

Stochastic Control Methods in Continuous Time

Hamilton-Jacobi-Bellman (HJB) Equation

- Continuous-time version of Bellman Equation
- **Requires Markovian formulation with explicit defin. of state space:** $V(\cdot)$ vs $V_t(\cdot)$
- **Solve (Postulate) value function** $V(n, \eta)$
- Stochastic Maximum Principle
 - Conditions that characterize path of optimal solution (as opposed to whole value function)
 - Closer to discrete-time Euler equations than Bellman equation
 - Does not require Markovian problem structure
 - Solve (Postulate) co-state variable ξ_t^i
- Martingale Method
 - (Very general) shortcut for portfolio choice problem
 - Yields interpretable equations (effectively linear factor pricing equations)
 - But: tailored to specific problems (portfolio choice), non-trivial to apply elsewhere
 - Postulate SDF process: $d\xi_t^i/\xi_t^i$

1. Hamilton-Jacobi-Bellman (HJB) Equation

- Stochastic Version of single-agent consumption-portfolio choice
- HJB Differential equation
- Special Cases:
 - Constant Returns
 - Time-varying Returns

Value Function and Principle of Optimality

- Notation:
 - $\mathcal{A}(n,\eta)$: set of admissible choices $\{c_t, \theta_t\}_{t=0}^{\infty}$ given the initial conditions: $n_0 = n, \eta_0 = \eta$
 - $\mathcal{A}_{\mathcal{T}}(n,\eta)$: set of policies $\{c_t, \theta_t\}_{t=0}^{\mathcal{T}}$ over $[0, \mathcal{T}]$ that have admissible extensions to $[0, \infty)$, $\{c_t, \theta_t\}_{t=0}^{\infty} \subset \mathcal{A}(n, \eta)$
- Define the <u>value function</u> of the decision problem:

$$V(n,\eta) := \max_{\{\theta_t, c_t\}_{t=0}^{\infty} \in \mathcal{A}(n,\eta)} \mathbb{E}_t \left[\int_0^{\infty} e^{-\rho t} u(c_t) dt \right]$$

• It is easy to see that V satisfies the Bellman principle of optimality: for all T > 0

$$V(n,\eta) := \max_{\{\theta_t, c_t\}_{t=0}^T \subset \mathcal{A}_T(n,\eta)} \mathbb{E}_t \left[\int_0^T e^{-\rho t} u(c_t) \mathrm{d}t + e^{-\rho T} V(n_T,\eta_T) \right]$$

(where n_T depends on the choice $\{\theta_t, c_t\}_{t=0}^T$ over [0, T].)

A Stochastic Version of the HJB Equation: Derivation

• With $V_t := V(n_t, \eta_t)$, can write the principle of optimality as:

$$0 = \max_{\{\theta_t, c_t\}_{t=0}^T \subset \mathcal{A}_T(n_0, \eta_0)} \mathbb{E}_t \left[\int_0^T e^{-\rho t} u(c_t) \mathrm{d}t + e^{-\rho T} V_T - V_0 \right]$$

By integrating by part:

$$e^{-\rho T}V_T - V_0 = -\rho \int_0^T e^{-\rho t} V_t \mathrm{d}t + \int_0^T e^{-\rho t} dV_t$$

Combine with previous equation:

$$0 = \max_{\{\theta_t, c_t\}_{t=0}^T \subset \mathcal{A}_T(n_0, \eta_0)} \mathbb{E}_t \left[\int_0^T e^{-\rho t} (u(c_t) - \rho V_t) \mathrm{d}t + e^{-\rho t} dV_t \right]$$

Divide by *T*, and take limit *T* ↓ 0:

Literally this yields the following equation only for t = 0, but we can shift time to any initial time due to Markovian

$$\rho V_t \mathrm{d}t = \max_{c_t, \theta_t} \{ u(c_t) \mathrm{d}t + \mathbb{E}[dV_t] \}$$

A Stochastic Version of the HJB Equation: Interpretation

Stochastic Version of HJB:

$$\rho V_t \mathrm{d}t = \max_{c_t, \theta_t} \{ u(c_t) \mathrm{d}t + \mathbb{E}[dV_t] \}$$

- This is an implicit backward stochastic differential equation (BSDE) for value process V_t
- What does it mean?
 - Stochastic: equation for the stochastic process V_t is not a deterministic function
 - Differential equation: relates time differential dV_t to process value V_t (& other variables)
 - Backward: forward-looking equation that must be solved backward in time, determines only expected time differential E[dV_t], volatility process is part of the solution
 - Implicit: $\mathbb{E}[dV_t]$ is not explicitly solved for, instead part of non-linear expression on right-hand side (due to max operator)

Digression: Alternative Derivation: Time Approximation

• Usual way of writing discrete time Bellman Equation $(\beta := e^{-\rho})$

$$V(n_t, \eta_t) = \max_{c_t, \theta_t} \{ u(c_t) + \beta \mathbb{E}_t [V(n_{t+1}, \eta_{t+1})] \}$$

• More generally, with generic period length $\Delta t > 0$ ($\beta = e^{-\rho\Delta t}$):

$$V(n_t, \eta_t) = \max_{c_t, \theta_t} \{ u(c_t) \Delta t + \beta \mathbb{E}_t [V(n_{t+\Delta t}, \eta_{t+\Delta t})] \}$$

Subtract $\beta V(n_t, \eta_t)$ from both sides:

$$\frac{1-\beta}{\Delta t}V(n_t,\eta_t)\Delta t = \max_{c_t,\theta_t} \{u(c_t)\Delta t + \beta \mathbb{E}_t [V(n_{t+\Delta t},\eta_{t+\Delta t}) - V(n_t,\eta_t)]\}$$

Taking the limit $\Delta t \rightarrow 0$ yields again:

$$\rho V(n_t, \eta_t) \mathrm{d}t = \max_{c_t, \theta_t} \{ u(c_t) dt + \mathbb{E}_t [dV(n_t, \eta_t)] \}$$

1. Hamilton-Jacobi-Bellman (HJB) Equation

- Stochastic Version of single-agent consumption-portfolio choice
- HJB Differential equation
- Special Cases:
 - Constant Returns
 - Time-varying Returns

- Next Step: transform stochastic version of HJB into a (non-stochastic) differential equation
- General idea: use Itô's lemma to express $\mathbb{E}[dV_t]$ in terms of derivatives of value function V_t

• Which of the following is the correct one? [Recall the definition $V_t = V(n_t, \eta_t)$]

$$\begin{split} \begin{bmatrix} \mathbf{a} \end{bmatrix} & \mathbb{E}[dV_t] = \left(\partial_n V(n_t, \eta_t) \mu_{n,t} + \partial_\eta V(n_t, \eta_t) \mu_{\eta,t}\right) dt \\ \begin{bmatrix} \mathbf{b} \end{bmatrix} & \mathbb{E}[dV_t] = \left(\partial_n V(n_t, \eta_t) \mu_{n,t} + \partial_\eta V(n_t, \eta_t) \mu_{\eta,t} \\ & + \frac{1}{2} \left(\partial_{nn} V(n_t, \eta_t) \sigma_{n,t}^2 + \partial_{\eta\eta} V(n_t, \eta_t) \sigma_{\eta,t}^2\right) \right) dt \\ \begin{bmatrix} \mathbf{c} \end{bmatrix} & \mathbb{E}[dV_t] = \left(\partial_n V(n_t, \eta_t) \mu_{n,t} + \partial_\eta V(n_t, \eta_t) \mu_{\eta,t} \\ & + \frac{1}{2} \left(\partial_{nn} V(n_t, \eta_t) \sigma_{n,t}^2 + \partial_{\eta\eta} V(n_t, \eta_t) \sigma_{\eta,t}^2 + \partial_{\eta n} V(n_t, \eta_t) \sigma_{\eta,t} \sigma_{n,t}\right) \right) dt \\ \begin{bmatrix} \mathbf{d} \end{bmatrix} & \mathbb{E}[dV_t] = \left(\partial_n V(n_t, \eta_t) \mu_{n,t} + \partial_\eta V(n_t, \eta_t) \mu_{\eta,t} \\ & + \frac{1}{2} \left(\partial_{nn} V(n_t, \eta_t) \sigma_{n,t}^2 + \partial_{\eta\eta} V(n_t, \eta_t) \sigma_{\eta,t}^2 \right) + \partial_{\eta n} V(n_t, \eta_t) \sigma_{\eta,t} \sigma_{n,t} \right) dt \end{split}$$

- Next Step: transform stochastic version of HJB into a (non-stochastic) differential equation
- General idea: use Itô's lemma to express $\mathbb{E}[dV_t]$ in terms of derivatives of value function V_t

Here, $V_t = V(n_t, \eta_t)$, so we can write:

$$\rho V_{t} dt = \max_{c_{t},\theta_{t}} \left(\partial_{n} V(n_{t},\eta_{t}) \mu_{n,t} + \partial_{\eta} V(n_{t},\eta_{t}) \mu_{\eta,t} \right. \\ \left. + \frac{1}{2} \left(\partial_{nn} V(n_{t},\eta_{t}) \sigma_{n,t}^{2} + \partial_{\eta\eta} V(n_{t},\eta_{t}) \sigma_{\eta,t}^{2} \right) + \partial_{\eta n} V(n_{t},\eta_{t}) \sigma_{\eta,t} \sigma_{n,t} \right) dt$$

- Next Step: transform stochastic version of HJB into a (non-stochastic) differential equation
- General idea: use Itô's lemma to express $\mathbb{E}[dV_t]$ in terms of derivatives of value function V_t

Here, $V_t = V(n_t, \eta_t)$, so we can write:

$$\rho V_{t} dt = \max_{c_{t},\theta_{t}} \left(\partial_{n} V(n_{t},\eta_{t}) \mu_{n,t} + \partial_{\eta} V(n_{t},\eta_{t}) \mu_{\eta,t} \right. \\ \left. + \frac{1}{2} \left(\partial_{nn} V(n_{t},\eta_{t}) \sigma_{n,t}^{2} + \partial_{\eta\eta} V(n_{t},\eta_{t}) \sigma_{\eta,t}^{2} \right) + \partial_{\eta n} V(n_{t},\eta_{t}) \sigma_{\eta,t} \sigma_{n,t} \right) dt$$

For this problem, drifts and volatilities are:

$$\begin{aligned} \mu_{n,t} &= -c_t + n_t \left[r(\eta_t) + (1 - \theta_t) \delta^{\mathfrak{a}}(\eta_t) \right] & \mu_{n,t} = \mu_{\eta}(\eta_t) \\ \sigma_{n,t} &= n_t (1 - \theta_t) \sigma^{\mathfrak{a}}(\eta_t) & \sigma_{n,t} = \sigma_{\eta}(\eta_t) \end{aligned}$$

25 / 46

• Combining the previous equation and dropping *dt* and time subscripts:

$$\begin{split} \rho V(n,\eta) &= \max_{c} \left(u(c) - \partial_{n} V(n,\eta) c \right) \\ &+ \max_{\theta} \left\{ \partial_{n} V(n,\eta) n(r(\eta) + (1-\theta) \delta^{a}(\eta)) \right. \\ &+ \left(\frac{1}{2} \partial_{nn} V(n,\eta) n(1-\theta) \sigma^{a}(\eta) + \partial_{\eta n} V(n,\eta) \sigma_{\eta}(\eta) \right) n(1-\theta) \sigma^{a}(\eta) \right\} \\ &+ \partial_{\eta} V(n,\eta) \mu_{\eta}(\eta) + \frac{1}{2} \partial_{\eta \eta} V(n,\eta) (\sigma_{\eta}(\eta))^{2} \end{split}$$

This is a nonlinear partial differential equation (PDE) for $V(n, \eta)$ Note: nonlinearity enters through the max operator

1. Hamilton-Jacobi-Bellman (HJB) Equation

- Stochastic Version of single-agent consumption-portfolio choice
- HJB Differential equation
- Special Cases:
 - Constant Returns
 - Time-varying Returns

Special Case: Constant Returns

Lets first assume that returns are constant: $r_t = r, \delta_t^a = \delta^a, \sigma_t^a = \sigma^a$ Can then drop η from the problem and write the HJB as:

$$\rho V(n) = \max_{c} \left(u(c) - V'(n)c \right) + \max_{\theta} \left(V'(n)n(r + (1 - \theta)\delta^{a}) + \frac{1}{2}V''(n)n^{2}((1 - \theta)\sigma^{a})^{2} \right)$$

To solve this equation, first solve optimizations.

optimal consumption choice: marginal utility of consumption = marginal value of wealth

$$u'(c) = V'(n)$$

optimal portfolio choice: Merton portfolio weight

$$1-\theta = \left(-\frac{V''(n)n}{V'(n)}\right)^{-1}\frac{\delta^a}{(\sigma^a)^2}$$

Remarks:

this has a flavor of mean-variance portfolio choices: - V''(n)n / V'(n) is the relative risk aversion, δ^a is the excess return and (σ^a)² is the risky asset's variance

Solving HJB for Constant Return Case

- We could now plug optimal choices and solve the resulting ODE numerically
- Instead for this problem: guess functional form and solve analytically
- Guess: V(n) = u(ωn)/ρ with some constant ω > 0. Plugging into HJB equaiton
 γ = 1 (log utility)

$$\log \omega + \log n = \log \rho + \log n - 1 + \frac{1}{\rho} \left(r + \frac{1}{2\gamma} \left(\frac{\delta^a}{\sigma^a} \right)^2 \right)$$

• $\gamma \neq 1$:

$$\rho \frac{(\omega n)^{1-\gamma}}{\rho} = \gamma \rho^{1/\gamma} \omega^{1-1/\gamma} \frac{(\omega n)^{1-\gamma}}{\rho} + (1-\gamma) \left(r + \frac{1}{2\gamma} \left(\frac{\delta^{\mathfrak{a}}}{\sigma^{\mathfrak{a}}}\right)\right) \frac{(\omega n)^{1-\gamma}}{\rho}$$

In both cases, *n* cancels out, thus verifying our guess (we can then solve for ω)

Full solution for Constant Return Case

Value function:

$$V(n) = \frac{u(\omega n)}{\rho}$$

Optimal choices:

$$\begin{cases} c(n) = \rho^{1/\gamma} \omega^{1-1/\gamma} n\\ 1 - \theta(n) = \frac{1}{\gamma} \frac{\delta^a}{(\sigma^a)^2} \end{cases}$$

• Constant ω in the value function (for $\gamma \neq 1$):

$$\omega = \rho \left(1 + \frac{\gamma - 1}{\gamma} \frac{1}{\rho} \left(r - \rho + \frac{1}{2\gamma} \left(\frac{\delta^{a}}{\sigma^{a}} \right)^{2} \right) \right)^{\frac{\gamma}{\gamma - 1}}$$

Discussion of Optimal Consumption Choice

$$c_t/n_t = \rho^{1/\gamma} \omega_t^{1-1/\gamma}$$

Reaction of c/n to investment opportunities ω depends on EIS $\psi := 1/\gamma$:

1 $\psi < 1$ better investment opportunities \Rightarrow consumption \uparrow , savings \downarrow

- **iii** $\psi > 1$ better investment opportunities \Rightarrow consumption \downarrow , savings \uparrow
- iii $\psi = 1$ consumption-wealth ratio independent of investment opportunities
- Why this ambiguous relationship? Two effects:
 - 1 income effect:
 - improved investment opportunities ω make investor effectively richer
 - investor responds by increasing consumption in all periods
 - 2 substitution effect:
 - improved investment opportunities ω makes saving more attractive
 - to benefit from them, investor reduces consumption now to get more consumption later

 $\psi\,<\,1$ substitution effect weak (consumption smoothing desire), income effect dominates

 $\psi > 1$ investor less averse against variation in consumption, substitution effect dominates

Discussion of Optimal Consumption Choice

• Combining the previous equation and dropping *dt* and time subscripts:

$$\begin{split} \rho V(n,\eta) &= \max_{c} \left(u(c) - \partial_{n} V(n,\eta) c \right) \\ &+ \max_{\theta} \bigg\{ \partial_{n} V(n,\eta) n(r(\eta) + (1-\theta) \delta^{a}(\eta)) \\ &+ \left(\frac{1}{2} \partial_{nn} V(n,\eta) n(1-\theta) \sigma^{a}(\eta) + \partial_{\eta n} V(n,\eta) \sigma_{\eta}(\eta) \right) n(1-\theta) \sigma^{a}(\eta) \bigg\} \\ &+ \partial_{\eta} V(n,\eta) \mu_{\eta}(\eta) + \frac{1}{2} \partial_{\eta \eta} V(n,\eta) (\sigma_{\eta}(\eta))^{2} \end{split}$$

Solution method 1: solve this two-dimensional PDE for V numerically Solution method 2: guess $V(n, \eta) = \frac{u(\omega(\eta)n)}{\rho}$ and reduce to one-dimensional ODE for $\omega(\eta)$

Time-varying Returns: Optimal Consumption and Portfolio

Optimal consumption choice (after using guess from previous slide)

$$c(n,\eta) = \rho^{1/\gamma} (\omega(\eta))^{1-1/\gamma} n$$

 \blacksquare as for constant returns, but now investment opportunities $\omega(\eta)$ are state-dependent

Optimal portfolio choice (after using guess from previous slide)

$$1 - \theta(n, \eta) = \underbrace{\frac{1}{\gamma} \frac{\delta^{\mathfrak{a}}(\eta)}{(\sigma^{\mathfrak{a}}(\eta))^2}}_{\text{myopic demand}} + \underbrace{\frac{1 - \gamma}{\gamma} \frac{\frac{\omega'(\eta)}{\omega(\eta)} \sigma_{\eta}(\eta) \sigma^{\mathfrak{a}}(\eta)}{(\sigma^{\mathfrak{a}}(\eta))^2}}_{\text{hedging demand}}$$

additional hedging demand term that depends on covariance $\sigma^{\omega}\sigma^{a}$ of investment opportunities with asset return

Time-varying Returns: Hedging Demand

$$1 - \theta(n, \eta) = \underbrace{\frac{1}{\gamma} \frac{\delta^{\mathfrak{s}}(\eta)}{(\sigma^{\mathfrak{s}}(\eta))^{2}}}_{\text{myopic demand}} + \underbrace{\frac{1 - \gamma}{\gamma} \frac{\frac{\omega'(\eta)}{\omega(\eta)} \sigma_{\eta}(\eta) \sigma^{\mathfrak{s}}(\eta)}{(\sigma^{\mathfrak{s}}(\eta))^{2}}}_{\text{hedging demand}}$$

- Why should variation in future investment opportunities be relevant for portfolio choice? Two opposing motives:
 - 1 If investment opportunities are good, it is valuable to have any resources available
 - invest in assets that pay off in states in which investment opportunities are good
 - 2 If investment opportunities are bad, that's bad time for investor and additional wealth is valuable
 - invest in assets that pay off in states in which investment opportunities are bad
- Which of the two dominates depends on γ :
 - a $\gamma < {\rm 1},$ investor not very risk averse, prefer to have resources available when it is profitable to invest
 - **b** $\gamma > 1$, investor sufficiently risk averse to want to hedge against bad times
 - c $\gamma = 1$, the two forces cancel out, investor acts myopically
- Remark: a very conservative investor $(\gamma \rightarrow \infty)$ only cares about the hedging component

Determining Investment Opportunities

- \blacksquare When substituting optimal choices into HJB, n cancels out, and we get ODE for $\omega(\eta)$
- \blacksquare One can solve this numerically for the function $\omega(\eta)$
- Details will be provided in Lecture 06 (later)
 - (E.g., solve equivalently for $v(\eta) := (\omega(\eta))^{1-\gamma}$ which is a "more linear" (less kinky) ODE.)

Example Solution

Parameters: $\rho = 0.02, \gamma = 5, \phi = 0.2, \sigma = 0.1, r^0 = 0.02, r^1 = 0.01, \delta^0 = 0.3, \delta^1 = 0.03, \sigma^0 = 0.15$

Stochastic Control Methods in Continuous Time

- Hamilton-Jacobi-Bellman (HJB) Equation
 - Continuous-time version of Bellman Equation
 - Requires Markovian formulation with explicit definition of state space: $V(\cdot)$ vs $V_t(\cdot)$
 - Solve (Postulate) value function $V(n, \eta)$
- Stochastic Maximum Principle
 - Conditions that characterize path of optimal solution (as opposed to whole value function)
 - Closer to discrete-time Euler equations than Bellman equation
 - Does not require Markovian problem structure
 - Solve (Postulate) co-state variable ξⁱ_t
- Martingale Method
 - (Very general) shortcut for portfolio choice problem
 - Yields interpretable equations (effectively linear factor pricing equations)
 - But: tailored to specific problems (portfolio choice), non-trivial to apply elsewhere
 - Postulate SDF process: $d\xi_t^i/\xi_t^i$

Consider a finite-horizon control problem:

$$\mathbb{E}_{0}\left[\int_{0}^{T} g(t, X_{t}, A_{t}) \mathrm{d}t + G(X_{T})\right]$$
$$dX_{t} = \mu(X_{t}, A_{t}) \mathrm{d}t + \sigma(X_{t}, A_{t}) \mathrm{d}Z_{t}$$

where: g(t, X_t, A_t) is payoff flow, A_t are the control and X_t are states
Instead of solving such an optimization problem directly, one can work with p_t, q_t (costates of the system), dynamic multiplier on X_t. The Hamiltonian:

$$H_t = g(t, X_t, A_t) + \langle p_t, \mu(X_t, A_t) \rangle + \operatorname{tr}[q_t^T \sigma(X_t, A_t)]$$

The Stochastic Maximum Principle: under necessary convexity condition, pt must satisfy the BSDE:

$$\mathrm{d}\boldsymbol{p}_t = -H_X(t, X_t, A_t, p_t, q_t)\mathrm{d}t + q_t\mathrm{d}Z_t$$

with terminal condition $p_T = G'(X_t)$.

• Label co-state ξ_t^i and its volatility $-\varsigma_t^i \xi_t^i$

- **Link to HJB**: costate ξ_t^i acts like a Lagrange multiplier on the net worth evolution, marginal (time-zero) utility benefit of giving agent *i* an additional unit of (time *t*) wealth, $\xi_t^i = e^{-\rho t} V_t'(n_t)$ **Link to Martingale Method**: we will see later that co-state ξ_t^i will be the SDF, $-\zeta_t^i \xi_t^i$ is the
- (arithmetic) volatility of ξ_{t}^{i}
- Hamiltonian:

$$\begin{aligned} H_t^i &= e^{-\rho t} \frac{(c_t^i)^{1-\gamma}}{1-\gamma} + \xi_t^i n_t^j \mu_t^{n^i} - \varsigma_t^i \xi_t^i n_t^j \sigma_t^{n^i} \\ &= e^{-\rho t} \frac{(c_t^i)^{1-\gamma}}{1-\gamma} + \xi_t^i \left[-c_t^i + n_t^i (1-\theta_t^i) (r_t + \delta_t^a) + n_t^i \theta_t^i r_t - \varsigma_t^i n_t^i (1-\theta_t^i) \sigma_t^{r^a} \right] \end{aligned}$$

• Label co-state ξ_t^i and its volatility $-\zeta_t^i \xi_t^i$

Link to HJB: costate \$\xi_t\$ acts like a Lagrange multiplier on the net worth evolution, marginal (time-zero) utility benefit of giving agent *i* an additional unit of (time *t*) wealth, \$\xi_t^i = e^{-\rho t} V'_t(n_t)\$
 Link to Martingale Method: we will see later that co-state \$\xi_t^i\$ will be the SDF, \$-\xi_t^i \xi_t^i\$ is the

- **Link to Martingale Method**: we will see later that co-state ξ_t^i will be the SDF, $-\varsigma_t^i \xi_t^i$ is the (arithmetic) volatility of ξ_t^i
- Hamiltonian:

$$\begin{aligned} H_t^i &= e^{-\rho t} \frac{(c_t^i)^{1-\gamma}}{1-\gamma} + \xi_t^i n_t^i \mu_t^{n^i} - \varsigma_t^i \xi_t^i n_t^j \sigma_t^{n^i} \\ &= e^{-\rho t} \frac{(c_t^i)^{1-\gamma}}{1-\gamma} + \xi_t^i \left[-c_t^i + n_t^i (1-\theta_t^i) (r_t + \delta_t^a) + n_t^i \theta_t^i r_t - \varsigma_t^i n_t^i (1-\theta_t^i) \sigma_t^{r^a} \right] \end{aligned}$$

FOC w.r.t θ_t^i, c_t^i

$$e^{-\rho t} (c_t^i)^{-\gamma} = \xi_t^i$$
$$\delta_t^a = \varsigma_t^i (\sigma + \sigma_t^q)$$

Costate equation (additional FOC)

$$\mathrm{d}\xi_t^i = -\frac{\partial H}{\partial n^i} \mathrm{d}t - \varsigma_t^i \xi_t^i \mathrm{d}Z_t$$

• The drift of ξ_t^i is given by:

$$u_t^{\xi^i}\xi_t^i = -\frac{\partial H}{\partial n^i} = -\xi_t^i \left[(1-\theta_t^i)(r_t+\delta_t^a) + \theta_t^i r_t - \varsigma_t^i (1-\theta_t^i)\sigma_t^{r^a} \right]$$

Hence,

$$\frac{\mathrm{d}\xi_t^i}{\xi_t^i} = -r_t \mathrm{d}t - \varsigma_t^i \mathrm{d}Z_t$$

• $(\xi_t^i, -\varsigma_t^i)$ are indeed SDF and price of risk!

Under log utility:

$$\xi_t^i = \partial_n V_t^i = \frac{1}{\rho n_t^i}, \varsigma_t^i = \sigma_t^{n^i}$$

Same result as HJB approach

Stochastic Control Methods in Continuous Time

- Hamilton-Jacobi-Bellman (HJB) Equation
 - Continuous-time version of Bellman Equation
 - Requires Markovian formulation with explicit definition of state space: $V(\cdot)$ vs $V_t(\cdot)$
 - Solve (Postulate) value function $V(n, \eta)$
- Stochastic Maximum Principle
 - Conditions that characterize path of optimal solution (as opposed to whole value function)
 - Closer to discrete-time Euler equations than Bellman equation
 - Does not require Markovian problem structure
 - Solve (Postulate) co-state variable ξ_t^i
- Martingale Method
 - (Very general) shortcut for portfolio choice problem
 - Yields interpretable equations (effectively linear factor pricing equations)
 - But: tailored to specific problems (portfolio choice), non-trivial to apply elsewhere
 - **Postulate SDF process:** $d\xi_t^i/\xi_t^i$

Method 3: Martingale Approach – Discrete Time

$$\max_{\{c_t, \boldsymbol{\theta}_t\}_{\tau=t}^{T}} \mathbb{E}_t \left[\sum_{\tau=t}^{T} \frac{1}{(1+\rho)^{\tau-t}} u(c_{\tau}) \right]$$

s.t. $\boldsymbol{\theta}_t \boldsymbol{p}_t = \boldsymbol{\theta}_{t-1}(\boldsymbol{p}_t + \boldsymbol{d}_t) - c_t$, for all t

FOC w.r.t θ_t at t

$$\xi_t p_t = \mathbb{E}\left[\xi_{t+1}(p_{t+1} + d_{t+1})\right]$$

where $\xi_t = \frac{1}{(1+\rho)^t}$ is the (multi-period) stochastic discount factor (SDF)

- If projected on asset span, then pricing kernel ξ_t^*
- Note: $MRS_{t,\tau} = \xi_{t+\tau}/\xi_t$
- Consider portfolio, where one reinvests dividend d
 - Portfolio is a self-financing trading strategy, A, with price, p_t^A

$$\xi_t p_t^{\mathcal{A}} = \mathbb{E}_t \left[\xi_{t+1} p_{t+1}^{\mathcal{A}} \right]$$

• $\xi_t p_t^A$ is a martingale.

Method 3: Martingale Approach – Cts. Time

$$\begin{aligned} \max_{\substack{\{c_t, \theta_t\}_{t=0}^{\infty}}} \mathbb{E}_t \left[\int_0^\infty e^{-\rho t} u(c_t) dt \right] \\ s.t. \quad \frac{\mathrm{d}n_t}{n_t} &= -\frac{c_t}{n_t} \mathrm{d}t + \sum_j \theta_t^j \mathrm{d}r_t^j + \text{labor income/endowment/taxes} \\ n_0 \text{ given} \end{aligned}$$

Portfolio Choice: Martingale Approach

• Let x_t^A be the value of a "self-financing trading strategy" (reinvest dividends) • Theorem: $\xi_t x_t^A$ follows a martingale, i.e., drift = 0• Let $\frac{dx_t^A}{x_t^A} = \mu_t^A dt + \sigma_t^A dZ_t$, postulate $\frac{d\xi_t^i}{\xi_t^i} = \underbrace{\mu_t^{\xi_t^i}}_{-r_t^i} dt + \underbrace{\sigma_t^{\xi_t^i}}_{-\varsigma_t^i} dZ_t$. Then by product rule: $\frac{d(\xi_t^i x_t^A)}{\xi_t^i x_t^A} = \underbrace{(-r_t^i + \mu_t^A - \varsigma_t^i \sigma_t^A)}_{=0} dt$ + volatility term $\Rightarrow \underbrace{\mu_t^A = r_t^i + \varsigma_t^i \sigma_t^A}_{=0}$ • For risk-free asset, i.e., $\sigma_t^A = 0$, $r_t^f = r_t^i$ • Excess expected return to risky asset B: $\mu_t^A - \mu_t^B = \varsigma_t^i (\sigma_t^A - \sigma_t^B)$

Remark: What is ξ_t for CRRA utility

•
$$\xi_t$$
 is $e^{-\rho t}u'(c_t) = e^{-\rho t}c_t^{-\gamma}$. [Note: $dc_t = \mu_t^c c_t dt + \sigma_t^c c_t dZ_t$]

Apply Itô's Lemma:

• Note:
$$u'' = -\gamma c^{-\gamma - 1}, u''' = \gamma (\gamma + 1) c^{-\gamma - 2}$$

$$\frac{\mathrm{d}\xi_t}{\xi_t} = -\underbrace{\left(\rho + \gamma\mu_t^{\mathsf{c}} - \frac{1}{2}\gamma(\gamma+1)(\sigma_t^{\mathsf{c}})^2\right)}_{r_t^{\mathsf{f}}}\mathrm{d}t - \underbrace{\gamma\sigma_t^{\mathsf{c}}}_{\varsigma_t}\mathrm{d}Z_t$$

- Risk free rate r_t^f
- Price of risk ς_t

Aside: Epstein-Zin(-Duffie) preferences with EIS ψ

$$r^{f} = \rho + \psi^{-1} \mu_{t}^{c} - \frac{1}{2} \gamma (\psi^{-1} + 1) (\sigma_{t}^{c})^{2}$$

Method 3: Martingale Approach - Cts. Time

- Proof 1: Stochastic Maximum Principle (see Handbook chapter)
- Proof 2: Intuition (calculus of variation)
 Remove from the optimum Δ at t₁ and add back at t₂

$$V(n,\omega,t) = \max_{\{\iota_s,\theta_s,c_t\}_{s=t}^{\infty}} \mathbb{E}_t \left[\int_0^{\infty} e^{-\rho(s-t)} u(c_s) ds | \omega_t = \omega \right]$$

■ s.t. *n*_t = *n*

$$e^{-\rho t_1} \frac{\partial V}{\partial n}(n_{t_1}^*, x_{t_1}, t_1) x_{t_1}^{\mathcal{A}} = \mathbb{E}\left[e^{-\rho t_2} \frac{\partial V}{\partial n}(n_{t_2}^*, x_{t_2}, t_2) x_{t_2}^{\mathcal{A}}\right]$$

See Lecture notes and Merkel's handout

Stochastic Control Methods in Continuous Time

- Hamilton-Jacobi-Bellman (HJB) Equation
 - Continuous-time version of Bellman Equation
 - Requires Markovian formulation with explicit definition of state space: $V(\cdot)$ vs $V_t(\cdot)$
 - Solve (Postulate) value function $V(n, \eta)$
- Stochastic Maximum Principle
 - Conditions that characterize path of optimal solution (as opposed to whole value function)
 - Closer to discrete-time Euler equations than Bellman equation
 - Does not require Markovian problem structure
 - Solve (Postulate) co-state variable ξ_t^i
- Martingale Method
 - (Very general) shortcut for portfolio choice problem
 - Yields interpretable equations (effectively linear factor pricing equations)
 - But: tailored to specific problems (portfolio choice), non-trivial to apply elsewhere
 - Postulate SDF process: $d\xi_t^i/\xi_t^i$