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Overview of Lecture 02

Why continuous time modeling (big picture)?
Basic It6 Calculus

Single-agent Consumption-Portfolio Choice
Stochastic Control Methods in Continuous Time

m Hamilton-Jacobi-Bellman (HJB) Equation
m Stochastic Maximum Principle (Pontryagin)
m Martingale Method
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Why Continuous Time Modeling?

Time aggregation
m Data come in different frequency

m GDP quarterly
m High frequency financial data

m Consumption

m Same IES within and across periods
m Discrete time consumption

m |[ES/RA within period = o0, but across periods = 1/~

Optimal stopping problems - no interger issues

Sharp distinction between stock and flow (rate)
m Beginning of period = end of period wealth
m E.g. consumption = time-preference rate * end of period wealth
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Brownian Motion d/
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Ito Processes: Characterization, Skewness over At

m |to processes ... fully characterized by drift and volatility
dX; = p(Xt, t)dt + o(Xe, t)dZ;
m Arithmetic Itd's Process: dX; = px dt + ox,+dZ;
m Geometric It6's Process: dX; = pf X dt + crf(XtdZt
m Characterization for full volatility dynamics on Prob.-space

m Discrete time: Probability loading on states
conditional expectations E[X]|Y] difficult to handle
m Cts. time Loading on a Brownian Motion dZ; captured by o

m Normal distribution for dt, yet with skewed distribution for At > 0

n
m If o; is time-varying
m E.g. from normal-dt to log-normal-At and vice versa (geometric dX;.)

Markus.Economicus@gmail.com MacroFina Fall, 2023 5/ 46



Continuity of It6 Processes

m Continuous path

m Information arrives continuously “smoothly” - not in lumps

m Implicit assumption: can react continuously to continuous info flow
m Never jumps over a specific point, e.g. insolvency point

m Simplifies numerical analysis:

m Only need change from grid-point to grid-point (since one never jumps
beyond the next grid-points)

m No default risk: Can continuously delever as wealth declines
m Might embolden investors ex-ante
m Collateral constraint
m Discrete time: bRy t41 < min{qsy1}k:
m Cts. time: by < (pr + dpr )k
——

—0
For short-term debt — not for long-term debt ... or if there are jumps

m Levy processes ... with jumps
m Still price of risk * risk, but not linear
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Conditional Expectations for 1to

m in discrete time: e.g. E(V(n)]
m Need function V(7)) across all states n
m Simulate 7 to obtain probability weights for 1 all realizations

1
m in continuous time with 1t6: |E[dV (n)] = V' (n)u,dt + §V”(77)a,2,dt

m Just need the two neighboring grid points instead of the whole function — V”(n)

-
= V(1) is approximated by Y(FA)=V(0) ,
V() by LRV (V) V(- 2))

p Y@)=V(@n=4).
A 1

m Similar for price g(n)
Return equations: requires only slope of price function g(n) to determine
amplification instead of whole price function across all 7 in discrete time.
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Dynamic Portfolio Choice in Continuous Time

m Portfolio choice - tension in discrete time

Time dimension

ReRiy1... = etHiet1t log-normal returns
Portfolio

c

g | OIR+OIRI 4+ ..
Q

: normal returns

8

9]

m Linearize kills o-term, all assets are equivalent

m 2nd order approximation kills time-varying o
m Log-linearize a la Campbell-Shiller
m As At — 0 (log) returns converge to normal distribution

m Constantly adjust the approximation point
m Nice formula for portfolio choice for Ito process
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Consumption Choice & Wealth (Share) Dynamics

m Consumption choice
m Nice Process

m consumption/wealth ratio is constant for log-utility, e.g. for log-utility
¢t = pN;
m Beginning = end of period net worth/wealth

m Evolution of state variables wealth (shares)/distribution

m Nice Characterization
m Evolution of distributions (e.g. wealth distribution) characterized by
Kolmogorov Forward Equation (Fokker-Planck equation)
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Overview of Lecture 02

Why continuous time modeling (big picture)?
Basic It6 Calculus

Single-agent Consumption-Portfolio Choice
Stochastic Control Methods in Continuous Time

m Hamilton-Jacobi-Bellman (HJB) Equation
m Stochastic Maximum Principle (Pontryagin)
m Martingale Method

Markus.Economicus@gmail.com i e Fall, 2023 10 / 46



Notations for 1t6’s Process

m Arithmetic 1t8's Process: dX;: = pux dt + ox +dZ;

m X in the subscript of y and o
B ux.: and ox; (can be) time varying

m Geometric Itd's Process: dX; = qutdt + af(XtdZt

m X in the superscript of p and o.
m Example: Stock goes up 32% or down 32% over a year (256 trading days):

m Note: This is not a general convention, but used during this course.

Markus.Economicus@gmail.com MacroFina Fall, 2023 11 / 46



Basics of 1t6’s Calculus
m It6's Lemma in geometric notation:
_ ! X 1 " X 2 ! X
df(Xt) =|f (Xt)ut Xt + §f (X) Ot Xt dt + f (Xt)O't XtdZt

m Example: SDF's volatility for CRRA utility: u(c) = Cl:;l, uv(c)=c"

s
§ _ —ptct = E _ c
t = € = O = —70¢

%
m [t6 product rule: (stock price * exchange rate)

d(X:Ye)

v = Wt ul +ofol)t+ (o + o))z,

m [t6 ratio rule:

d(X:/Y,
o) = =l oY (o] = e+ (0 - oz
Xe/ Y
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Single-agent Consumption-Portfolio Choice

m Choose consumption {c:}7~, and portfolio weights to {6}, to maximize:

cl-v—1

E [Joo e_’”u(ct)dt] , with u(c) = 1—~

0

m Subject to:
m Net worth evolution

Vt>0: dnt = —Ctdt + nt[etrtdt + (1 — Qt)drta]

m A solvency constrant: Vt > 0, n; > 0.

alternatively, a “no Ponzi condition” leads to identical solution

m Beliefs about:

m r; risk-free rate
m drf risky asset return process with risk premium 62: drf = (ry + 02)dt + 02dZ;
m Take prices/returns as given

Markus.Economicus@gmail.com i e Fall, 2023 13 / 46



State Space

m Suppose returns are a function of state variable 7;:

n= r(m), 5? = 63(77t)7 U? = U"(m)

m 7); evolves according to a diffusion process:

dne = pf (ne)nedt + of (ne)nedZ;

® with initial state ng given
m Then decision problem has two state variables:

m n; controlled state
m 7); external state

m For each initial state (ng,79) we have a separate decision problem
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Example: Functional Forms

®
g
= =
E E
< S
_¢) 0
1 05 0 05 1 1 05 0 05 1

m 7-evolution (implies n; € (—1,1))

phn =y = =g, oy(n) = o(l—n?)
m Asset returns:
0

rin) =0 +rtn, §8(n) =48 —ol, o¥(n) =0 o'y

m With parameters: 9 r%, 6% 6%, 6% 01 >0
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Stochastic Control Methods in Continuous Time

= Hamilton-Jacobi-Bellman (HJB) Equation

m Continuous-time version of Bellman Equation
= Requires Markovian formulation with explicit defin. of state space: V/(-) vs
V()
m Solve (Postulate) value function V(n,n)
m Stochastic Maximum Principle
m Conditions that characterize path of optimal solution
(as opposed to whole value function)
m Closer to discrete-time Euler equations than Bellman equation
m Does not require Markovian problem structure
m Solve (Postulate) co-state variable ¢}
m Martingale Method
(Very general) shortcut for portfolio choice problem
Yields interpretable equations (effectively linear factor pricing equations)

But: tailored to specific problems (portfolio choice), non-trivial to apply elsewhere
Postulate SDF process: d¢/&l
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1. Hamilton-Jacobi-Bellman (HJB) Equation

m Stochastic Version of single-agent consumption-portfolio choice

m HJB Differential equation
m Special Cases:

m Constant Returns
m Time-varying Returns
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Value Function and Principle of Optimality

m Notation:
m A(n,n): set of admissible choices {c;,0:} , given the initial conditions:

Nno = n,1o =1
m A7(n,n): set of policies {c;,0:}/_, over [0, T] that have admissible extensions to
[0,0), {ct,0:}72g = A(n,m)

m Define the value function of the decision problem:

o0
Vv = E —pt dt
(n.7) (Once)EqeA(n) tUo e Pule) ]

m It is easy to see that V satisfies the Bellman principle of optimality: for all T > 0

T
V(nn) := max " n)Et [Jo e Ptu(c)dt + e_pTV(nT,n-,-)]

{Qt,ct}tTZOCAT

(where nt depends on the choice {0;,c;}]_, over [0, T].)
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A Stochastic Version of the HIB Equation: Derivation

m With V; := V/(n,m:), can write the principle of optimality as:

-
0= max E, [J e tu(c,)dt + e PTVy — Vo]
(no,mo) 0

{et,Ct}Z—:OCAT

m By integrating by part:

T T
e PTVr—Vy = —pJ e PtV dt +J e PtdV,
0 0
m Combine with previous equation:
T
0= max E; [J e "(u(cy) — pVe)dt + e_ptdvt]
{0¢,¢e} o= AT (no,m0) 0

m Divide by T, and take limit T | O:

Literally this yields the following equation only for t = 0, but we can shift time to any intitial time due to Markovian

pVidt = maex{u(ct)dt + E[dV4]}

Ct,0t
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A Stochastic Version of the HJB Equation: Interpretation

m Stochastic Version of HJB:

pVedt = m%x{u(ct)dt + E[dV4]}

Ct,0t

m This is an implicit backward stochastic differential equation (BSDE) for value
process V;

m What does it mean?

m Stochastic: equation for the stochastic process V; is not a deterministic function

m Differential equation: relates time differential dV; to process value V; (& other
variables)

m Backward: forward-looking equation that must be solved backward in time,
determines only expected time differential E[dV;], volatility process is part of the
solution

m Implicit: E[dV;] is not explicitly solved for, instead part of non-linear expression on
right-hand side (due to max operator)
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Digression: Alternative Derivation: Time Approximation

m Usual way of writing discrete time Bellman Equation (3 := e™?)

V(ng,ne) = m%x{u(ct) + BE[V (nes1,mer1)]}

Ct,0t

m More generally, with generic period length At > 0 (8 = e PA%):

V(ne,ne) = maex{u(ct)At + BE(V (nerae nerae)]}

Ct,0t
Subtract SV (n¢, n:) from both sides:

1—
A—tBV(nt,nt)At = T%X{U(Ct)At + BE[V (neraenerae) — V(ng,ne)]}

Taking the limit At — 0 yields again:

pV (ne,ne)dt = max{u(ce)dt + E[dV (ne,n:)]}

ct,0t
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1. Hamilton-Jacobi-Bellman (HJB) Equation

m Stochastic Version of single-agent consumption-portfolio choice
m HJB Differential equation

m Special Cases:

m Constant Returns
m Time-varying Returns
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The (Deterministic) HJB Equation

m Next Step: transform stochastic version of HJB into a (non-stochastic)
differential equation

m General idea: use It6's lemma to express E[dV}] in terms of derivatives of value
function V;
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Poll: The (Deterministic) HJB Equation
m Which of the following is the correct one? [Recall the definition V; = V(n¢, nt)]
ol E10Vi] = (4o (s + 20V ) )
[b] E[dVi] = <3nV(”t?ﬁt)Hn,t + 0n V (e, Me) g ¢
+ % (OnnV(ne, 77t)0,27,t + Oy V (N, nt)cr??,t) )dt
[c] E[dVe] ={ 0nV(ne,me)ptne + OV (ne, 1) g 1
+ % (@m V(nhnt)aﬁ’t + 6,,,7V(nt,nt)o,2m + Oyn V(”r,ﬁr)%,r%,r)) dt
[d] E[dV:] =(0nV(ne,ne)ptn,e + 0nV (0t me) fhy ¢

(ann V(nta 7]1’)0127,1.“ + a777] V(”t: nt)a%,t) + ann V(nta nt)an,tan,t> dt
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The (Deterministic) HJB Equation

m Next Step: transform stochastic version of HJB into a (non-stochastic)
differential equation

m General idea: use It6's lemma to express E[dV;] in terms of derivatives of value
function V;
Here, Vi = V(n¢, 1), so we can write:

thdt = max(anV N, 7']1_» Hn,t + 0 V(nt,nt)un t

Ct:

1
= (Onn V(ne,me)o oht + OV (ne,me)o t) + OpnV (0, )0 0t | dt
2 Ty,
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The (Deterministic) HJB Equation

m Next Step: transform stochastic version of HJB into a (non-stochastic)
differential equation
m General idea: use It6's lemma to express E[dV;] in terms of derivatives of value

function V;
Here, Vi = V(n¢, 1), so we can write:

thdt = max(anV N, 7']1_» Hn,t +0 V(nt,nt)un t

Ct:

1
- (0,,,, V(nt, T]t) n t + é’,m V(nt, T]t) ) + 0,7,, \/(nt7 7715)0'7] tO'n t dt
2

m For this problem, drifts and volatilities are:

png = —Ce + ne[r(ne) + (1= 0:)6°(ne)] fne = (1)
Ont = ne(1 —0¢)o(ne) Onit = Un(nt)
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The (Deterministic) HJB Equation

m Combining the previous equation and dropping dt and time subscripts:
pV(n,n) =max (u(c) = ,V(n,n)c)
+ max{ 00V (o mn(r(n) + (1= 6)0°(0)
(0 V(1 = 0)0%(0) + V0 0)) 1 = 0)0%(0)
0V (g (n) + 2V (1) (0 (1)

This is a nonlinear partial differential equation (PDE) for V(n,n)
Note: nonlinearity enters through the max operator
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1. Hamilton-Jacobi-Bellman (HJB) Equation

m Stochastic Version of single-agent consumption-portfolio choice

m HJB Differential equation
m Special Cases:

m Constant Returns
m Time-varying Returns
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Special Case: Constant Returns

Lets first assume that returns are constant: r; = r, 02 = 6%,02 = o?

Can then drop n from the problem and write the HJB as:

c

pV(n) = max (u(c) — V'(n)c) + max <V’(n)n(r +(1-6)5%) + %V”(n)nz((l — 9)03)2)

To solve this equation, first solve optimizations.
m optimal consumption choice: marginal utility of consumption = marginal value of wealth

u'(c) = V'(n)
m optimal portfolio choice: Merton portfolio weight

b0 < Vv”'(<nn)>n> i <<f:>2
Remarks:

m this has a flavor of mean-variance portfolio choices: —% is the relative risk

aversion, 02 is the excess return and (0)? is the risky asset’s variance
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Solving HJB for Constant Return Case

m We could now plug optimal choices and solve the resulting ODE numerically
m Instead for this problem: guess functional form and solve analytically
m Guess: V(n) = @ with some constant w > 0. Plugging into HJB equaiton
m v =1 (log utility)
1 1 /6%\?
logw +logn=1logp+logn—1+—|r+ — | —
p 2y \ o?
my#1L
P o?

2y p

In both cases, n cancels out, thus verifying our guess (we can then solve for w)
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Full solution for Constant Return Case

m Value function:

m Optimal choices:

C(n) — pl/’ywl_l/'yn
L

L= Sy

m Constant w in the value function (for v # 1):

0
y-11 1 /62\?\\ "’
w=p 1+T; r—p—i—z ;
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Discussion of Optimal Consumption Choice

1-1
Ct/nt _ pl/'ywt /Y

m Reaction of ¢/n to investment opportunities w depends on EIS ¢ := 1/~:

H ¢ < 1 better investment opportunities = consumption 1, savings |
H ) > 1 better investment opportunities = consumption |, savings }
[l ©» = 1 consumption-wealth ratio independent of investment opportunities

m Why this ambiguous relationship? Two effects:
income effect:

m improved investment opportunities w make investor effectively richer
m investor responds by increasing consumption in all periods
substitution effect:
m improved investment opportunities w makes saving more attractive
m to benefit from them, investor reduces consumption now to get more
consumption later

1 < 1 substitution effect weak (consumption smoothing desire), income effect dominates

9 > 1 investor less averse against variation in consumption, substitution effect dominates
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Discussion of Optimal Consumption Choice

m Combining the previous equation and dropping dt and time subscripts:
pV(n.) = max (u(c) — 0,V(n,m)c)
+ max{ 20V (o)) + (1= 0)0°(0)
(G0 V(1 = 0)0%(0) + Vi) 1)) 1 = 0)0%(0) |
8V () + oV () (o))
Solution method 1: solve this two-dimensional PDE for V' numerically

Solution method 2: guess V(n,n) = M and reduce to one-dimensional
ODE for w(n)
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Time-varying Returns: Optimal Consumption and Portfolio

B Optimal consumption choice (after using guess from previous slide)
1 1-1
c(n,n) = p"7 (W)~ 7n
m as for constant returns, but now investment opportunities w(7) are state-dependent

B Optimal portfolio choice (after using guess from previous slide)

1 09(n) 1—~ w(( ))Un(n)a"”(n)

1—0(nn) = -
yle*m)? v (02(n))
myopicﬁemand hedgingvdemand

B additional hedging demand term that depends on covariance 0“c? of investment
opportunities with asset return
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Time-varying Returns: Hedging Demand

w

’
1 6%(n) 1—7~ w((:)) on(mo(n)

1—6(n,n) = —
v (o2(n))? v (02(n))?
A
myopic demand hedging demand

m Why should variation in future investment opportunities be relevant for portfolio choice?
Two opposing motives:
If investment opportunities are good, it is valuable to have any resources available
B invest in assets that pay off in states in which investment opportunities are
good
If investment opportunities are bad, that’s bad time for investor and additional
wealth is valuable
B invest in assets that pay off in states in which investment opportunities are
bad
m Which of the two dominates depends on +:

Bl + < 1, investor not very risk averse, prefer to have resources available when it is profitable to

invest
3 ~ > 1, investor sufficiently risk averse to want to hedge against bad times
v = 1, the two forces cancel out, investor acts myopically

m Remark: a very conservative investor (v — o0) only cares about the hedging component

Markus.Economicus@gmail.com Ma Fall, 2023 34 / 46



Determining Investment Opportunities

m When substituting optimal choices into HJB, n cancels out, and we get ODE for
w(n)

m One can solve this numerically for the function w(n)

m Details will be provided in Lecture 06 (later)

= (E.g., solve equivalently for v(n) := (w(n))' " which is a “more linear” (less kinky)
ODE.)
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Example Solution

x108 x10
1.8 9
" 16 388
8.6
1.4
-1 05 0 05 1 -1 05 0 05 1
n E n
E
=03 —
0.0106 = - N
< -
g .
= 0.0104 <02
= s
=
0.0102 g o1
5
0.01 3o
-1 05 0 05 ' 05 0 05 1
| n
7] —

Parameters:
p=002y=50¢=020=0.1r"=0.02,r' =0.01,6° = 0.3,6 = 0.03,6° = 0.15
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Stochastic Control Methods in Continuous Time

m Hamilton-Jacobi-Bellman (HJB) Equation

m Continuous-time version of Bellman Equation
m Requires Markovian formulation with explicit definition of state space: V/(-) vs V4(+)
m Solve (Postulate) value function V/(n,n)

m Stochastic Maximum Principle

m Conditions that characterize path of optimal solution
(as opposed to whole value function)
m Closer to discrete-time Euler equations than Bellman equation
= Does not require Markovian problem structure
= Solve (Postulate) co-state variable ¢/
m Martingale Method
(Very general) shortcut for portfolio choice problem
Yields interpretable equations (effectively linear factor pricing equations)

But: tailored to specific problems (portfolio choice), non-trivial to apply elsewhere
Postulate SDF process: d¢}/&l
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Method 2: Stochastic Maximum Principle

m Consider a finite-horizon control problem:

T

o | [ ele.X Adde + 60x7)|
0

dXt = M(XtyAt)dt + O'(Xt, At)dZt

where: g(t, X, A¢) is payoff flow, A; are the control and X; are states

m Instead of solving such an optimization problem directly, one can work with
pt, g¢ (costates of the system), dynamic multiplier on X;. The Hamiltonian:

Hy = g(t, Xe, At)+ < pe, (X, Ae) > +t1“[thU(Xt,At)]

m The Stochastic Maximum Principle: under necessary convexity condition, p:
must satisfy the BSDE:

dpr = —Hx(t, X¢, At, pr, qe)dt + qrd Z;
with terminal condition pr = G'(X¢).
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Method 2: Stochastic Maximum Principle

m Label co-state & and its volatility —¢;&;
m Link to HIB: costate &! acts like a Lagrange multiplier on the net worth evolution, marginal
(time-zero) utility benefit of giving agent i an additional unit of (time t) wealth, & = e=PtV/(n;)
B Link to Martingale Method: we will see later that co-state &; will be the SDF, —cj¢i is the
(arithmetic) volatility of &}

m Hamiltonian:

i —pt(ct{)l_ PP ieiionl
Hy = e P ———— + &nppd — si&enpoy

1—x
_ —pt(Cé)l_7 i i pi(1— g 5 i — ni(1— 0"
=¢€ 1—~ + & [_Ct+nt( ) (re +67) + nbere — cuny( £)o¢ ]
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Method 2: Stochastic Maximum Principle

m Label co-state & and its volatility —¢;&;
m Link to HIB: costate &! acts like a Lagrange multiplier on the net worth evolution, marginal
(time-zero) utility benefit of giving agent i an additional unit of (time t) wealth, & = e=PtV/(n;)
B Link to Martingale Method: we will see later that co-state &; will be the SDF, —cj¢i is the
(arithmetic) volatility of &}

m Hamiltonian:

i —pt(Ci)l_'Y PP ieiionl
Hy = e P ———— + &nppd — si&enpoy

1—x
_ —pt(Cé)l_7 i i pi(1— g 5 i — ni(1— 0"
=¢€ 1—~ + & [_Ct+nt( ) (re +67) + nbere — cuny( £)o¢ ]

m FOC w.rt Qé, c,f

eV (c) 7 = ¢

62 =cl(o + o)
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Method 2: Stochastic Maximum Principle

m Costate equation (additional FOC)
dél = ———dt —cjeldz,
m The drift of &i is given by:
i oH i i i _r
'U’ggt: _:_gt[( )(rt+5)+'9trt_§t(1_9t)at]
m Hence, _
&t
m (¢, —c!) are indeed SDF and price of risk!
m Under log utility:

= —ndt —¢ldZ;

. . 1 . I'
£ =00V = ﬁa# =0y

t

Same result as HJB approach
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Stochastic Control Methods in Continuous Time

m Hamilton-Jacobi-Bellman (HJB) Equation

m Continuous-time version of Bellman Equation
m Requires Markovian formulation with explicit definition of state space: V/(-) vs V;(+)
m Solve (Postulate) value function V/(n,n)

m Stochastic Maximum Principle

m Conditions that characterize path of optimal solution
(as opposed to whole value function)
m Closer to discrete-time Euler equations than Bellman equation
m Does not require Markovian problem structure
m Solve (Postulate) co-state variable ¢/

= Martingale Method

m (Very general) shortcut for portfolio choice problem

m Yields interpretable equations (effectively linear factor pricing equations)
m But: tailored to specific problems (portfolio choice), non-trivial to apply
elsewhere

Postulate SDF process: d¢!/¢!
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Method 3: Martingale Approach — Discrete Time
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s.t. otpt = ot_l(pt + dt) - Ct, for a” t

m FOCw.rt 8; at t
§epr = E[Eer1(pes1 + diy1)]

where §; = 5 is the (multi-period) stochastic discount factor (SDF)

1+p
m If projected on asset span, then pricing kernel &
m Note: MRS, ; = &eir /6

m Consider portfolio, where one reinvests dividend d
m Portfolio is a self-financing trading strategy, A, with price, p

ftpf =E; [fH-IP;‘-q-l]

m &pf is a martingale.
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Method 3: Martingale Approach — Cts. Time

max E; UOO eptu(ct)dt]

{Ct’ot}?go 0
dnt
s.t. — = dt + 2 ejde —+ labor income/endowment/taxes
ne nt
2l glven

m Portfolio Choice: Martingale Approach
m Let x/* be the value of a “self-financing trading strategy” (reinvest dividends)

m Theorem: &:x{' follows a martingale, i.e., drift = 0

m Let dX* = pfdt + o2dZ,, postulate ?g,ﬁ = ,ut' dt + afl dZ;. Then by product
~—— ~——
—r =i
rule: A
d(&ix : - -
% =(—r+ pd —clot )dt + volatility term = | uf = r! + ¢lof
tXt ~

=0
m For risk-free asset, i.e., of =0, rf =1l
m Excess expected return to risky asset B: uf! — u8 = /(o — oB)
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Remark: What is &; for CRRA utility

m&is e Pt () = e Py 7. [Note: dey = pScedt + ofcrdZy]
m Apply Itd's Lemma:
m Note: v/ = —yc 7 L 0" =y(y+1)c7 72

dée _
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m Risk free rate rf
m Price of risk ¢
m Aside: Epstein-Zin(-Duffie) preferences with EIS 1)

1 1 _ c
rf=p+y tug = ST+ 1)(0F)

Markus.Economicus@gmail.com MacroFinance 02: Opti Fall, 2023 44 / 46



Method 3: Martingale Approach - Cts. Time

m Proof 1: Stochastic Maximum Principle (see Handbook chapter)

m Proof 2: Intuition (calculus of variation)
Remove from the optimum A at t; and add back at t»

a0
V(nw,t) = max E; [J e P70 (e ds|wy = w]
0

{Lsaos’cf}gozt
m st ng=n

_ oV A — ov A
e " —(nf,xy, t1)x{ = E | e "2 ——(nf, xp,, )X},

on on

m See Lecture notes and Merkel's handout
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Stochastic Control Methods in Continuous Time

m Hamilton-Jacobi-Bellman (HJB) Equation

m Continuous-time version of Bellman Equation
m Requires Markovian formulation with explicit definition of state space: V/(-) vs V4(+)
m Solve (Postulate) value function V/(n,n)

m Stochastic Maximum Principle

m Conditions that characterize path of optimal solution
(as opposed to whole value function)
m Closer to discrete-time Euler equations than Bellman equation
m Does not require Markovian problem structure
m Solve (Postulate) co-state variable ¢}
m Martingale Method
(Very general) shortcut for portfolio choice problem
Yields interpretable equations (effectively linear factor pricing equations)

But: tailored to specific problems (portfolio choice), non-trivial to apply elsewhere
Postulate SDF process: d¢}/&l
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