
Deep learning and macro finance

Goutham Gopalakrishna

Rotman School of Management, University of Toronto

Princeton Initiative 2023

September 9, 2023

Goutham Gopalakrishna Rotman - UToronto

Goutham Gopalakrishna Rotman - UToronto September 9, 2023

Part-I: Introduction

Introduction

The basic idea of machine learning goes back to Rosenblatt (1958) who introduced the
idea of perceptron
The progress halted during the 1990s
Forces behind the revival

Big data
Cheap computational power
Advancements in algorithms

Popularity in industry: packages in Python, Tensorflow, Pytorch etc.
Strong community support for packages ùñ better tools in the future
Coding and compiling deep learning algorithms is easy thanks to the rich ecosystem
provided by Pytorch, Tensorflow, Keras etc.

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 1 / 57

Deep learning introduction

The goal is to approximate a function y “ f pxq, where y is some scalar and x is a vector
of inputs
In basic econometrics, this is a regression problem. In macroeconomics, f can be a value
function, policy function, pricing kernel etc.
y can also be a vector (vector of value functions, probability distribution etc.)

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 2 / 57

Deep learning introduction

An artifical neural network (ANN) as an approximation to the function f pxq takes the
form

y “ f pxq « σ

ˆ L
ÿ

i“1
wixi

˙

The most fundamental unit of deep neural network is called an artificial neuron

σ

x3

w3

x2

w2

x1

w1

y

Figure: Artificial Neuron

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 3 / 57

Feed forward neural network

a1

h1

a2

h2

a3

hL “ ŷ “ f pxq

xnx2x1

The input is an n-dimensional vector
The network contains L ´ 1 hidden layers
(2, in this case) having n neurons
The input layer is called 0th layer and the
output layer is Lth layer
Finally, there is one output layer containing
k neurons
Each neuron in the hidden layers can be
separted into two parts: aggregation (a)
and activation (h)
The parameters for the hidden layers are
weights Wi P Rnˆn and biases bi P Rn for
0 ă i ă L
The parameters for the output layers are
weights WL P Rnˆk and bL P Rk

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 4 / 57

Goutham Gopalakrishna

Goutham Gopalakrishna

Goutham Gopalakrishna

Goutham Gopalakrishna

Goutham Gopalakrishna

Goutham Gopalakrishna

Feed forward neural network

a1

h1

a2

h2

a3

hL “ ŷ “ f pxq

xnx2x1

The input is an n-dimensional vector
The network contains L ´ 1 hidden layers
(2, in this case) having n neurons
The input layer is called 0th layer and the
output layer is Lth layer
Finally, there is one output layer containing
k neurons
Each neuron in the hidden layers can be
separted into two parts: aggregation (a)
and activation (h)
The parameters for the hidden layers are
weights Wi P Rnˆn and biases bi P Rn for
0 ă i ă L
The parameters for the output layers are
weights WL P Rnˆk and bL P Rk

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 5 / 57

Feed forward neural network

a1

W1 b1

h1

a2

h2

a3

hL “ ŷ “ f pxq

xnx2x1

The input is an n-dimensional vector
The network contains L ´ 1 hidden layers
(2, in this case) having n neurons
The input layer is called 0th layer and the
output layer is Lth layer
Finally, there is one output layer containing
k neurons
Each neuron in the hidden layers can be
separted into two parts: aggregation (a)
and activation (h)
The parameters for the hidden layers are
weights Wi P Rnˆn and biases bi P Rn for
0 ă i ă L
The parameters for the output layers are
weights WL P Rnˆk and bL P Rk

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 6 / 57

Feed forward neural network

a1

W1 b1

h1

a2

W2 b2

h2

a3

hL “ ŷ “ f pxq

xnx2x1

The input is an n-dimensional vector
The network contains L ´ 1 hidden layers
(2, in this case) having n neurons
The input layer is called 0th layer and the
output layer is Lth layer
Finally, there is one output layer containing
k neurons
Each neuron in the hidden layers can be
separted into two parts: aggregation (a)
and activation (h)
The parameters for the hidden layers are
weights Wi P Rnˆn and biases bi P Rn for
0 ă i ă L
The parameters for the output layers are
weights WL P Rnˆk and bL P Rk

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 7 / 57

Feed forward neural network: Mathematical representation

a1

W1 b1

h1

a2

W2 b2

h2

a3

W3 b3

hL “ ŷ “ f pxq

xnx2x1

The aggregation in layer i is given by

ai pxq “ bi ` Wihi´1pxq

The activation in layer i is given by

hi pxq “ σpai pxqq

where g is called as the activation function
The activation at the final layer is given by

ŷpxq “ OpaLpxqq

where O is the activation function on the
final layer
For simplicity, we will denote ai and hi

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 8 / 57

Typical problem

a1

W1 b1

h1

a2

W2 b2

h2

a3

W3 b3

hL “ ŷ “ f pxq

xnx2x1

Data: tx j , y ju

Model:

ŷ j “ f DNNpx jq

“ O
`

W3σpW 2σpW1x j ` b1q ` b2q ` b3
˘

The type of neural network, number of
layers, number of neurons in each layer, and
activation function constitute architecture
of a particular neural network
Parameters: θ “ pW1, ..., WL; b1, ..., bLq

where L “ 3
Goal is to learn the optimal parameters θ
using an efficient algorithm

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 9 / 57

Why deep learning works?

1 Finds representations of data that is informationally efficient
2 Convenient representation of geometry in high-dimensional manifold

Deep neural networks are chains of affine transformations- makes affine transformation
followed by non-linear transformations sequentially
The chains of affine transformations ends up transforming the geometry of the state space
Optimizing in transformed geometry is often simpler

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 10 / 57

Geometric transformation

Source: François Chollet

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 11 / 57

Why deep learning works?

Deep neural network is represented mathematically as

ŷ “ f DNNpxq “ O
`

W3σpW 2σpW1x ` b1q ` b2q ` b3
˘

where the parameter vector is θ “ pW1, ..., WL; b1, .., bLq and O and σ are activation
functions
Comparing this with a standard projection method

ŷ “ f Projpxq “

L
ÿ

i“1
biϕi pxq

where the parameter vector is pb1., , bLq and ϕi is a Chebychev polynomial
Deep neural networks contain lots of parameters but with simple basis functions. Why is
this useful? Because the sequence of affine and non-linear transformations ends up
changing the geometry of the state space
Finding convenient geometric representations of the data is more important than finding
the right basis functions for approximation problems. This is where deep learning shines!

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 12 / 57

Comparison to other methods

Note that other methods can also approximate Borel-measurable functions well but DNNs
can also approximate functions with discontinuities. No assumptions about continuity or
differentiability required (Universal approximation theorem- Hornik, Stinchcombe, and
White (1989))
can approximate high dimensional functions with better accuracy

High
dimensions

Non-convex
state space

Big
data

Discontinuous
functions

Global
dynamics

Projection method ✓ ✗ ✓ ✗ ✓

Gaussian processes ✓ ✓ ✗ ✗ ✓

Adaptive sparse grid ✓ ✗ ✓ ✓ ✓

Deep learning: simulation ✓ ✓ ✓ ✓ ✗

Deep learning: active learning ✓ ✓ ✓ ✓ ✓

Source: Simon Scheidegger

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 13 / 57

Typical problem

The problem at hand is to find the approximation ŷ “ f ANNpx; θq

Assume that f ANN is a simple single layer network with activation σp¨q “ 1
expp´pwx`bqq

Consider a simple one dimensional problem. That is, the goal is to fit px , yq “ p0.5, 0.2q

and px , yq “ p2.5, 0.9q

That is, the at the end of training the network, we would like to find θ˚ such that
f ANNp0.5q “ 0.2 and f ANNp2.5q “ 0.9
The parameter vector θ “ rw , bs contain the weight and bias of the neuron activated σ

The loss function is given by Lpw , bq “
ř2

i“1
`

yi ´ f ANNpxi q
˘

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 14 / 57

Learning by trial and error

Can we try to find w˚, b˚ manually?

Let us use a random guess (w “ 0.5, b “ 0)
Does not seem a great fit. How can we quantify
how terrible (w “ 0.5, b “ 0) is?
Compute the loss using the loss function
Lpw , bq “

ř2
i“1

`

yi ´ f ANNpxi q
˘

Lp0.5, 0q “ 0.073
The goal is to make Lpw , bq as close to zero as
possible

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 15 / 57

Learning by trial and error

Can we try to find w˚, b˚ manually?
Let us use a random guess (w “ 0.5, b “ 0)

Does not seem a great fit. How can we quantify
how terrible (w “ 0.5, b “ 0) is?
Compute the loss using the loss function
Lpw , bq “

ř2
i“1

`

yi ´ f ANNpxi q
˘

Lp0.5, 0q “ 0.073
The goal is to make Lpw , bq as close to zero as
possible

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 15 / 57

Learning by trial and error

Can we try to find w˚, b˚ manually?
Let us use a random guess (w “ 0.5, b “ 0)
Does not seem a great fit. How can we quantify
how terrible (w “ 0.5, b “ 0) is?

Compute the loss using the loss function
Lpw , bq “

ř2
i“1

`

yi ´ f ANNpxi q
˘

Lp0.5, 0q “ 0.073
The goal is to make Lpw , bq as close to zero as
possible

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 15 / 57

Learning by trial and error

Can we try to find w˚, b˚ manually?
Let us use a random guess (w “ 0.5, b “ 0)
Does not seem a great fit. How can we quantify
how terrible (w “ 0.5, b “ 0) is?
Compute the loss using the loss function
Lpw , bq “

ř2
i“1

`

yi ´ f ANNpxi q
˘

Lp0.5, 0q “ 0.073
The goal is to make Lpw , bq as close to zero as
possible

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 15 / 57

Learning by trial and error

Can we try to find w˚, b˚ manually?
Let us use a random guess (w “ 0.5, b “ 0)
Does not seem a great fit. How can we quantify
how terrible (w “ 0.5, b “ 0) is?
Compute the loss using the loss function
Lpw , bq “

ř2
i“1

`

yi ´ f ANNpxi q
˘

Lp0.5, 0q “ 0.073
The goal is to make Lpw , bq as close to zero as
possible

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 15 / 57

Learning by trial and error

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 16 / 57

Learning by trial and error

It has made things worse. Perhaps it would help to push w and b in the other direction.

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 17 / 57

Learning by trial and error

Much better. Let us keep going in this direction (i.e., increase w and decrease b)

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 18 / 57

Learning by trial and error

Much better. Let us keep going in this direction (i.e., increase w and decrease b)

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 19 / 57

Learning by trial and error

Much better. Let us keep going in this direction (i.e., increase w and decrease b)

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 20 / 57

Learning by trial and error

More principled way of doing this guesswork is what learning is all about!

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 21 / 57

Why deep neural networks?

It seems like a single layer is enough to approximate the function well. Why do we need
hidden layers?
Complex problems require deep neural networks

Source: Yoshua Bengio.

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 22 / 57

Gradient descent algorithm

t Ð 0
max iter Ð 1000
while t ă max iter do

wt`1 Ð wt ´ η▽wt
bt`1 Ð bt ´ η▽bt
t Ð t ` 1

end
Algorithm 1: Gradient descent algorithm.

How to obtain ▽wt and ▽bt?

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 23 / 57

Goutham Gopalakrishna

Gradient descent

Let’s assume that there is only one point to fit
px , yq

Lpw , bq “ 0.5 ˚ pf ANNpxq ´ yq2

▽w “
BL
Bw “

B

Bw p0.5 ˚ pf ANNpxq ´ yq2q

...

▽w “ pf ANNpxq ´ yq ˚ f ANNpxq ˚ p1 ´ f ANNpxqq ˚ x

For two points,

▽w “

2
ÿ

i“1
pf ANNpxi q ´ yi q ˚ f ANNpxi q ˚ p1 ´ f ANNpxi qq ˚ xi

▽b “

2
ÿ

i“1
pf ANNpxi q ´ yi q ˚ f ANNpxi q ˚ p1 ´ f ANNpxi qq

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 24 / 57

Goutham Gopalakrishna

Gradient descent

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 25 / 57

Goutham Gopalakrishna

Gradient descent

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 26 / 57

Goutham Gopalakrishna

Gradient descent

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 27 / 57

Momemtum gradient descent

Navigating plateaus take a lot of time since gradients are small
Momentum based gradient descent fixes the problem
If you are being repeatedly asked to move in the same direction, then it is a good idea to
take bigger steps in that direction

ut “ βut´1 ` ▽wt

wt`1 “ wt ´ ηut

After some algebra, we have

ut “

t
ÿ

τ“0
βt´τ▽wτ

That is, ut is the exponentially weighted average of current and all past gradients

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 28 / 57

Stochastic gradient descent

In gradient descent, the gradients are computed
as the summation of gradients at all points
Updating the parameters this way is costly
especially in large datasets
An alternative is to update for each data point
ùñ Stochastic gradient descent

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 29 / 57

Stochastic gradient descent

Notice that in the stochastic gradient descent,
the parameters are updated for each data point
The computed gradients are therefore
approximations
This makes the descent stochastic. This is
because at each point, the parameters are
updated in the direction most favourable to it,
without being concerned about other points
There is no guarantee that at each step the loss
is reduced
Sometimes, the oscillations can be wild. How can
we reduce these oscillations? We can use
mini-batch gradient descent

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 30 / 57

Mini-batch gradient descent

In gradient descent, the the parameters are
updated after seeing all data points
In stochastic gradient descent, the parameters are
updated for each data point
In mini-batch gradient descent, the parameters
are updated after seeing mini-batch number of
data points

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 31 / 57

More variants

Adagrad , RMSProp, Adam: Adjust the learning rate to make sure that parameters
pertaining to sparse features get updated properly

Update rule for Adam

mt “ βt ˚ mt´1 ` p1 ´ βtq ˚ ▽wt

vt “ β2 ˚ vt´1 ` p1 ´ β2q ˚ p▽wtq2

m̂t “
mt

1 ´ βt
1

v̂t “
vt

1 ´ βt
2

wt`1 “ wt ´
ηt

?
v̂t ` ϵ

˚ m̂t

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 32 / 57

Backpropagation

We saw how to train a network with no hidden
layers and only one neuron

w “ w ´ η▽w

▽w “
BLpwq

Bw
“ pf pxq ´ yq ˚ f pxq ˚ p1 ´ f pxqq ˚ x

Extension to a network with multiple input is
straightforward

w1 “ w1 ´ η▽w1

w2 “ w2 ´ η▽w2

w3 “ w3 ´ η▽w3

▽wi “ pf pxq ´ yq ˚ f pxq ˚ p1 ´ f pxqq ˚ xi

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 33 / 57

Goutham Gopalakrishna

Functional approximation

Universal approximation theorem (Hornik, Stinchcombe, and White (1989)): A neural
network with at least one hidden layer can approximate any Borel measureable function
to any degree of accuracy
However, having non-linear activation function in the hidden layers is important

➣ Question: what happens when the activation functions are linear in a deep neural network?
Once activation function is σpxq “ 1

1`expp´pwx`bqq

Another popular activation function is the Rectified Linear Unit (ReLU)
σpxq “ maxt0, xu

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 34 / 57

Limitations

Obviously, there are some limitations
Deep neural networks require lots of data to work with

➢ Not a problem for the task at our hand since we will use simulated data
No theoretical guidance for choosing the right architecture
Learning can be slow without access to a high performance cluster

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 35 / 57

Under the hood

Right choice of architecture and optimizers are important
Lots of options to choose from

1 Architectures: Feed-forward, Recurrent, LSTMs, Gated, LLMs etc.
2 Optimizers: ReLu, SeLu, ELu, Tanh, Sigmoid, Swish, and so on.

Under the hood details including tensorflow implementation can be found in my mini
course available online here.

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 36 / 57

https://bcf.princeton.edu/events/mini-lecture-deep-learning-and-macrofinance/

Goutham Gopalakrishna Rotman - UToronto September 9, 2023

Part-II: Application

ALIENs: What is it about?

AL: Actively learn about state space with stark non-linearity/large prediction error
I: Encode economic information as regularizer

ENs: Use neural network to solve general equilibrium continuous time finance models to
capture global dynamics (portfolio choice, macro-finance, monetary policy)

1 Portfolio Choice: Merton (1971), Cochrane et al (2008), Martin (2013)
2 Macro-Finance: He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014), Di

Tella (2017), Li (2019), Krishnamurthy and Li (2022)
3 Monetary Theory: Silva (2020), Brunnermeier and Sannikov (2016), Drechsler, Savov, and

Schnabl (2018)

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 37 / 57

ALIENs: What is it about?

AL: Actively learn about state space with stark non-linearity/large prediction error

I: Encode economic information as regularizer
ENs: Use neural network to solve general equilibrium continuous time finance models to
capture global dynamics (portfolio choice, macro-finance, monetary policy)

1 Portfolio Choice: Merton (1971), Cochrane et al (2008), Martin (2013)
2 Macro-Finance: He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014), Di

Tella (2017), Li (2019), Krishnamurthy and Li (2022)
3 Monetary Theory: Silva (2020), Brunnermeier and Sannikov (2016), Drechsler, Savov, and

Schnabl (2018)

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 37 / 57

ALIENs: What is it about?

AL: Actively learn about state space with stark non-linearity/large prediction error
I: Encode economic information as regularizer
ENs: Use neural network to solve general equilibrium continuous time finance models to
capture global dynamics (portfolio choice, macro-finance, monetary policy)

1 Portfolio Choice: Merton (1971), Cochrane et al (2008), Martin (2013)
2 Macro-Finance: He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014), Di

Tella (2017), Li (2019), Krishnamurthy and Li (2022)
3 Monetary Theory: Silva (2020), Brunnermeier and Sannikov (2016), Drechsler, Savov, and

Schnabl (2018)

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 37 / 57

General setup

Ut “ Et
“

ż 8

t
f pcs , Usqds

‰

(1)

Exogenous dividend process of risky asset
dyt
yt

“ gdt ` σ dZt
ljhn

Brownian shock

(2)

There is also a risk free debt market (pays return r). Risky asset has price of risk ζt , and
volatility σR

t
Problem of the agent is

sup
ĉ,θ

Ut (3)

s.t dwt
wt

“ pr ` θt
ljhn

port. choice

ζt
ljhn

price of risk

´ĉtqdt ` θt σR
t

ljhn

ret. volatility

dZt (4)

If g , σ, r are time varying, then we have a multi-dimensional problem

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 38 / 57

General setup

Ut “ Et
“

ż 8

t
f pcs , Usqds

‰

(1)

Exogenous dividend process of risky asset
dyt
yt

“ gdt ` σ dZt
ljhn

Brownian shock

(2)

There is also a risk free debt market (pays return r). Risky asset has price of risk ζt , and
volatility σR

t
Problem of the agent is

sup
ĉ,θ

Ut (3)

s.t dwt
wt

“ pr ` θt
ljhn

port. choice

ζt
ljhn

price of risk

´ĉtqdt ` θt σR
t

ljhn

ret. volatility

dZt (4)

If g , σ, r are time varying, then we have a multi-dimensional problem

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 38 / 57

General setup

Ut “ Et
“

ż 8

t
f pcs , Usqds

‰

(1)

Exogenous dividend process of risky asset
dyt
yt

“ gdt ` σ dZt
ljhn

Brownian shock

(2)

There is also a risk free debt market (pays return r). Risky asset has price of risk ζt , and
volatility σR

t
Problem of the agent is

sup
ĉ,θ

Ut (3)

s.t dwt
wt

“ pr ` θt
ljhn

port. choice

ζt
ljhn

price of risk

´ĉtqdt ` θt σR
t

ljhn

ret. volatility

dZt (4)

If g , σ, r are time varying, then we have a multi-dimensional problem

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 38 / 57

HJB

HJB is
sup
ĉt ,θt

f pct , Utq ` EtpdUtq “ 0

Conjecturing U “ Jw1´γ

1´γ , where J is the stochastic opportunity process and γ is the risk
aversion, the HJB equation reduces to

µJpx, JqJ “

d
ÿ

i“1
µxi px, Jq

BJ
Bxi

`

d
ÿ

i,j“1
bi,jpx, Jq

B2J
Bxi Bxj

(5)

1 State variables are x . Could be high-dimensional (large d)
2 µJ , µx , and bi,j are linear, advection, and diffusion coefficients

PDE (5) can be highly non-linear elliptical PDE depending on the problem
Past literature: Convert it into quasi-linear parabolic PDE and use finite difference Ñ

slowly introduce non-linearity through

µJpx, Jold qJ “
BJ
Bt `

d
ÿ

i“1
µxi px, Jold q

BJ
Bxi

`

d
ÿ

i,j“1
bi,jpx, Jold q

B2J
Bxi Bxj

(6)

Works well in low dimensions, but breaks down in high dimensions

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 39 / 57

Methodology overview

Focus of this part is to introduce a technique to solve macro models involving PDEs of
type (5) in high dimensions

1 Benchmark model (BS2016 with recursive preference)
2 Capital misallocation model with productivity shock (Gopalakrishna 2021)

Figure: Overview of methodology.

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 40 / 57

Neural network solution method

f :“ BĴ
Bt `

d
ÿ

i
µi pxq

BĴ
Bxi

`

d
ÿ

i,j“1
bi,jpxq

B2Ĵ
Bxi Bxj

´ µJ Ĵ “ 0;

@pt, xq P rT ´ k∆t, T ´ pk ´ 1q∆ts ˆ Ω
Ĵ “ J̃0 @pt, xq P pT ´ pk ´ 1q∆tq ˆ Ω;

where Ĵ is a neural network object with parameters Θ, and f is the PDE residual.

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 41 / 57

Neural network solution method

f :“ BĴ
Bt `

d
ÿ

i
µi pxq

BĴ
Bxi

`

d
ÿ

i,j“1
bi,jpxq

B2Ĵ
Bxi Bxj

´ µJ Ĵ “ 0;

@pt, xq P rT ´ k∆t, T ´ pk ´ 1q∆ts ˆ Ω
Ĵ “ J̃0 @pt, xq P pT ´ pk ´ 1q∆tq ˆ Ω;

where Ĵ is a neural network object with parameters Θ, and f is the PDE residual. Can be
seen as a classical constrained optimization problem

Optimization

Θ˚ “ argmin
Θ

Ĵ ´ J̃0

s.t. f “ 0

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 42 / 57

Neural network solution method

f :“ BĴ
Bt `

d
ÿ

i
µi pxq

BĴ
Bxi

`

d
ÿ

i,j“1
bi,jpxq

B2Ĵ
Bxi Bxj

´ µJ Ĵ “ 0;

@pt, xq P rT ´ k∆t, T ´ pk ´ 1q∆ts ˆ Ω
Ĵ “ J̃0 @pt, xq P pT ´ pk ´ 1q∆tq ˆ Ω;

Can be seen as an classical constrained optimization problem

Optimization

Θ˚ “ argmin
Θ

Ĵ ´ J̃0

s.t.
ż

t

ż

x
|f |2dtdx “ 0

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 43 / 57

Neural network solution method

f :“ BĴ
Bt `

d
ÿ

i
µi pxq

BĴ
Bxi

`

d
ÿ

i,j“1
bi,jpxq

B2Ĵ
Bxi Bxj

´ µJ Ĵ “ 0;

@pt, xq P rT ´ k∆t, T ´ pk ´ 1q∆ts ˆ Ω
Ĵ “ J̃0 @pt, xq P pT ´ pk ´ 1q∆tq ˆ Ω

Mesh free since we can randomly sample from the state space (t, xq to train the neural
network

Sparse training points in region of importance leads to instability in future iterations.
Solution: Track subdomain Ωc and sample more points from there

f “ 0 @pt, xq P rT ´ k∆t, T ´ pk ´ 1q∆ts ˆ Ωc ;
Ĵ “ J̃0 @px, tq P pT ´ pk ´ 1q∆tq ˆ Ωc ;

The subdomain Ωc is found by inspecting the PDE coefficients which are determined
using previous value J̃

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 44 / 57

Neural network solution method

f :“ BĴ
Bt `

d
ÿ

i
µi pxq

BĴ
Bxi

`

d
ÿ

i,j“1
bi,jpxq

B2Ĵ
Bxi Bxj

´ µJ Ĵ “ 0;

@pt, xq P rT ´ k∆t, T ´ pk ´ 1q∆ts ˆ Ω
Ĵ “ J̃0 @pt, xq P pT ´ pk ´ 1q∆tq ˆ Ω

Mesh free since we can randomly sample from the state space (t, xq to train the neural
network
Sparse training points in region of importance leads to instability in future iterations.
Solution: Track subdomain Ωc and sample more points from there

f “ 0 @pt, xq P rT ´ k∆t, T ´ pk ´ 1q∆ts ˆ Ωc ;
Ĵ “ J̃0 @px, tq P pT ´ pk ´ 1q∆tq ˆ Ωc ;

The subdomain Ωc is found by inspecting the PDE coefficients which are determined
using previous value J̃

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 44 / 57

Neural network solution method

f :“ BĴpx|Θq

Bt `

d
ÿ

i

µi
pxq

BĴpx|Θq

Bxi
`

d
ÿ

i,j“1

bi,j
pxq

B
2Ĵpx|Θq

Bxi Bxj
´ µJ Ĵpx|Θq “ 0;

@pt, xq P rT ´ k∆t, T ´ pk ´ 1q∆ts ˆ Ω

Ĵpx|Θq “ J̃0; @pt, xq P pT ´ pk ´ 1q∆tq ˆ Ω;

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 45 / 57

Active learning

Example from Gopalakrishna (2021): Macro-finance model with 2 state variables
(productivity, wealth share)

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 46 / 57

Active learning

Example from Gopalakrishna (2021): Macro-finance model with 2 state variables
(productivity, wealth share)

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 46 / 57

Active learning

Example from Gopalakrishna (2021): Macro-finance model with 2 state variables
(productivity, wealth share)

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 46 / 57

Solution technique: ALIENs

Figure: Methodology.

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 47 / 57

Solution technique: ALIENs

Figure: Methodology.

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 48 / 57

Solution technique: ALIENs

Figure: Methodology.

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 49 / 57

ALIENs

L “ λf Lf ` λjLj ` λbLb ` λ1
cL1

c ` λ2
cL2

c (7)
where

PDE loss Lf “
1

Nf

Nf
ÿ

i“1

|f px i
f , t i

f q|
2

Bounding loss-1 Lj
“

1
Nj

Nj
ÿ

i“1

|Ĵpx i
j , t i

j q ´ J̃ i
0|

2

Active loss-1 L2
c “

1
Nc

Nc
ÿ

i“1

|f px i
c , t i

cq|
2

Active loss-2 L1
c “

1
Nc

Nc
ÿ

i“1

|Ĵpx i
c , t i

cq ´ J̃ i
0|

2

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 50 / 57

Active Learning vs Simulation method

ALIENs actively learn the region of sharp transition and samples more points Ñ faster
convergence
Sampling procedure is complementary to simulation based methods (Azinovic et al
(2018), Villaverde et al (2020)), but also works for models with rare events and financial
constraints that bind far away from the steady state

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 51 / 57

Automatic differentiation in practice

Approximating J using a neural network
def J(z,t):

J = neural_net (tf. concat ([z,t] ,1) ,weights , biases)
return J

Constructing regularizer: 1D model
def f(z,t):

J = J(z,t)
J_t = tf. gradients (J,t)[0]
J_z = tf. gradients (J,z)[0]
J_zz = tf. gradients (J_z ,z)[0]
f = J_t + advection * J_z + diffusion * J_zz - linearTerm * J
return f

def f(z,a,t):
J = J(z,a,t)
J_t = tf. gradients (J,t)[0]
J_z = tf. gradients (J,z)[0]
J_a = tf. gradients (J,a)[0]
J_zz = tf. gradients (J_z ,z)[0]
J_aa = tf. gradients (J_a ,a)[0]
J_az = tf. gradients (J_a ,z)[0]
f = J_t + advection_z * J_z + advection_a * J_a + diffusion_z * J_zz +

diffusion_a * J_aa + crossTerm * J_az - linearTerm * J
return f

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 52 / 57

Automatic differentiation in practice

Approximating J using a neural network
def J(z,t):

J = neural_net (tf. concat ([z,t] ,1) ,weights , biases)
return J

Constructing regularizer: 1D model
def f(z,t):

J = J(z,t)
J_t = tf. gradients (J,t)[0]
J_z = tf. gradients (J,z)[0]
J_zz = tf. gradients (J_z ,z)[0]
f = J_t + advection * J_z + diffusion * J_zz - linearTerm * J
return f

def f(z,a,t):
J = J(z,a,t)
J_t = tf. gradients (J,t)[0]
J_z = tf. gradients (J,z)[0]
J_a = tf. gradients (J,a)[0]
J_zz = tf. gradients (J_z ,z)[0]
J_aa = tf. gradients (J_a ,a)[0]
J_az = tf. gradients (J_a ,z)[0]
f = J_t + advection_z * J_z + advection_a * J_a + diffusion_z * J_zz +

diffusion_a * J_aa + crossTerm * J_az - linearTerm * J
return f

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 52 / 57

Horovod

Data parallelism as opposed to Model parallelism
Horovod uses ringAllReduce operation to average gradients (improves efficiency)

Figure: Source: https://eng.uber.com/horovod/

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 53 / 57

Horovod

def J():
...

def f():
...

hvd.init () # initialize Horovod
config = tf. ConfigProto () #pin GPUs to processes
config . gpu_options . visible_device_list = str(hvd. local_rank ()) # assign chief worker
config . gpu_options . allow_growth = True # enable GPU
sess= tf. Session (config = config) # Configure tensorflow
if hvd.rank () ==0:

... # assign a piece of data to chief worker
else:

while hvd.rank () < hvd.size ():
... # assign a piece of data to each worker

def build_model ():
initialize parameters using Xavier initialization
parametrize the function J using J()
#buld loss function using net_f ()
#set up tensorflow optimizer in the variable name opt
optimizer = hvd. DistributedOptimizer (opt)
minimize loss
initialize Tensorflow session
bcast = hvd. broadcast_global_variables (0) # Broadcast parameters to all workers
sess.run(bcast)
train the deep learning model

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 54 / 57

HPC

Interactive mode
Sinteract -q gpu -p gpu -g gpu -m 12G -t 10:00:00
virtualenv –system-site-packages venv-for-tf
source ./venv-for-tf/bin/activate
pip install –user –no-cache-dir tensorflow-gpu==2.7.0

ipythonCores: 1
Tasks: 1
Time: 10:00:00
Memory: 128G
Partition: gpu
Account: sfi-pcd
Jobname: interact
Resource: gpu
QOS: gpu
salloc: job 124415 allocated

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 55 / 57

References: Part-I

Textbooks:
1 Raul Rojas. Neural Networks: A Systematic Introduction. 1996
2 Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. An MIT Press book.

2016
Other sources

1 Dive into deep learning (interactive learning material)
2 CSCS - USI Summer school 2020 by Simon Scheidegger
3 Machine learning for macroeconomics (teaching slides) by Jesús Fernández-Villaverde
4 Neural networks (teaching slides) by Hugo Larochelle
5 Deep learning CS6910 (teaching slides) by Mitesh Khapra

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 56 / 57

https://d2l.ai/
https://github.com/eth-cscs/SummerSchool2020/blob/master/topics/deep_learning/slides/Intro_deep_learning.pdf

References: Part-II

Goutham Gopalakrishna. ALIENs and Continuous Time Economies. 2021. SSRN
Working paper.
Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for
solving partial differential equations. 2018a. Journal of Computational Physics.
Victor Duarte. Machine Learning for Continuous-Time Economics. 2017. SSRN Working
paper.
Jesús Fernández-Villaverde, Samuel Hurtado, and Galo Nuno. Financial Frictions and the
Wealth Distribution. 2022. Econometrica (forthcoming).
Princeton Mini course materials (slides and code) by Goutham Gopalakrishna: Github
page.

Goutham Gopalakrishna Rotman - UToronto September 9, 2023 57 / 57

https://github.com/goutham-epfl/BCF-Workshop
https://github.com/goutham-epfl/BCF-Workshop

	General setup
	Methodology overview

