Princeton Initiative: Macro, Money, and Finance 2023 New Keynesian Economics with Safe Assets (based on "Flight-to-Safety in a New Keynesian Model")

Ziang Li

Sebastian Merkel

1

September 9, 2023

- This paper: merge
 - **(**) safe asset framework of Brunnermeier, Merkel, Sannikov (2023)
 - New Keynesian (NK) price setting models

to study transmission of uncertainty shocks (flight to safety) and policy

- Why interesting? Lessons differ from standard NK frameworks without safe assets (e.g. Basu, Bundick 2017)
 - transmission mechanism: portfolio choice is key (not intertemporal substitution)
 - quantity of safe assets becomes slow-moving state
 - asset pricing implications: overshooting of capital prices
 - policy implications: fiscal policy essential for aggregate demand management

- 3-equation (cashless) NK model:
 - two forward-looking equations relating flows
 - Euler equation ("IS curve"): relates consumption growth to discount rate
 - optimal price setting ("Phillips curve"): relates current inflation to future inflation and marginal costs
 - policy equation for nominal rate
- Model is essentially stateless: does not contain stocks that adjust slowly
- Stabilization policy about managing expectations to achieve "good" solutions \rightarrow interest rate policy ("monetary policy") is sufficient

This Paper: Quantity (Stock) of Safe Assets Matters

- In model:
 - agents face portfolio choice between capital (risky) and nominal gov. bonds (safe)
 - $\bullet\,$ sticky prices $\Rightarrow\,$ real value of bond stock adjusts sluggishly
- Key change: safe asset supply becomes a state variable
- Changes in portfolio demand for safe assets have aggregate demand effects
- Policy needs to ensure adequate safe asset supply
 - $\rightarrow\,$ goes beyond expectations management, requires adequate fiscal policy

Two remarks:

- Technically, ours is a HANK model
 - but we abstract from MPC heterogeneity
 - \rightarrow wealth distribution does not matter for aggregates
 - deliberate choice to isolate aggregate effects from safe asset demand
 - HA component merely used to generate that safe asset demand
- IANK papers have many extra (distributional) state variables, often focus on those
 - e.g. Bayer et al. 2019: model with "flight to liquidity" after uncertainty shock
 - but discussion focused on how wealth distribution is affected (and no analytical results)
 - our point: there is something else going on that is not about redistribution

1 Model

- Setup
- Numerical Example
- 2 Transmission of Uncertainty Shocks
 - Separation of Portfolio Choice
 - Shock Transmission under Flexible and Sticky Prices
 - Comparison to Models without Safe Assets

3 Policy

Outline

1 Model

- Setup
- Numerical Example
- 2) Transmission of Uncertainty Shocks
 - Separation of Portfolio Choice
 - Shock Transmission under Flexible and Sticky Prices
 - Comparison to Models without Safe Assets

3 Policy

Model Setup

- Continuous time, infinite horizon, one consumption good (= final output good)
- Agents
 - households: hold capital (idiosyncratically risky) and government bonds (nominally safe)
 - intermediate goods firms: rent capital, produce differentiated intermediate goods
 - final goods firms: combine intermediate goods outputs (CES technology)
- Government
 - issues nominal bonds
 - taxes capital, sets nominal interest rate
- Frictions
 - financial friction (incomplete markets): households cannot trade idiosynacratic risk
 - price setting friction: intermediate goods firms face price adjustment cost
- Aggregate risk: fluctuations in volatility of idiosyncratic shocks

Households

• Preferences ($i \in [0, 1]$ agent index):

$$\mathbb{E}\left[\int_0^\infty e^{-
ho t}\log c_t^i dt
ight]$$

- Manages capital k_t^i :
 - capital services (rented out): $u_t^i k_t^i dt$
 - entitles holder to profit redistribution from intermediate goods firms
 - investment technology: $\iota^i_t k^i_t dt$ final goods $\rightarrow \Phi(\iota^i_t) k^i_t dt$ capital units
 - capital tax by government: $au_t k_t^i dt$
 - capital evolution:

$$\frac{dk_t^i}{k_t^i} = \underbrace{\underbrace{\left(\Phi\left(\iota_t^i\right) - \delta\left(u_t^i\right)\right)}_{\text{investment and depreciation}}^{=:g\left(u_t^i, \iota_t^i\right)} dt}_{\text{investment and depreciation}} + \underbrace{d\Delta_t^{k,i}}_{\text{trading}} + \underbrace{\tilde{\sigma}_t d\tilde{Z}_t^i}_{\text{idio. shocks}}$$

- Can hold government bonds
 - nominally safe bonds
 - make floating nominal interest payments i_t

Government

• Nominal face value of bonds B_t

$$dB_t/B_t = \mu_t^B dt$$

• Flow budget constraint

$$\underbrace{\left(\mu_t^B - i_t\right)}_{=:\breve{\mu}_t^B} B_t + P_t \tau_t K_t = 0 \tag{BC}$$

- Baseline assumption: government adjusts taxes to maintain constant surplus-debt ratio \rightarrow implies constant $\breve{\mu}^B$ by (BC)
- Interest policy i_t follows some monetry policy rule

$$i_t = i\left(\mathbf{S}_t\right)$$

where \mathbf{S}_t is vector of aggregates (e.g. $\mathbf{S}_t = (\tilde{\sigma}_t, \pi_t)$)

Notation: Assets Values

- Assets in positive net supply: capital & bonds
 - capital: aggregate stock K_t , price (per unit) q_t^K
 - bonds: real value per unit of capital $q_t^B := \frac{B_t}{P_t} \frac{1}{K_t}$
- Share of bond wealth

$$\vartheta_t := \frac{B_t/P_t}{q_t^K K_t + B_t/P_t} = \frac{q_t^B}{q_t^K + q_t^B}$$

- In equilibrium:
 - all households choose identical portfolios
 - ϑ_t is also individual portfolio weight in bonds
- Note: B_t and K_t are slow-moving (have only drifts, no dZ_t loadings) \rightarrow when P_t is sticky, then so is q_t^B

Impulse Responses

Outline

1 Mode

• Setup

• Numerical Example

2 Transmission of Uncertainty Shocks

- Separation of Portfolio Choice
- Shock Transmission under Flexible and Sticky Prices
- Comparison to Models without Safe Assets

3 Policy

Households' Portfolio Choice

- Portfolio choice depends only on the relative returns and risk of capital and bonds, not on aggregate output and price setting frictions
- "Bond Valuation Equation": ϑ_t satisfies in equilibrium

$$\vartheta_t = \mathbb{E}_t \left[\int_t^\infty e^{-\rho(s-t)} \vartheta_s \left((1-\vartheta_s)^2 \tilde{\sigma}_s^2 - \breve{\mu}_s^B \right) ds \right]$$

• Separation: if $\check{\mu}_t^B$ is function of $(\tilde{\sigma}_t, \vartheta_t)$ only (e.g. constant $\check{\mu}^B$), then

$$\vartheta_t = \vartheta(\tilde{\sigma}_t)$$

does not depend on bond valuation state q_t^B

- ightarrow portfolios adjust "fast" (as under flexible prices)
- $\rightarrow~{\sf can}~{\sf treat}~\{\vartheta_t\}$ as essentially exogenous

Preliminaries: Asset Valuations and Demand

• Goods market clearing (depends on level of asset valuations)

• Portfolio choice (ϑ_t) determines relative asset valuations

$$q_t^{\mathcal{K}} = rac{1 - artheta_t}{artheta_t} q_t^{\mathcal{B}}, \qquad q_t^{\mathcal{B}} + q_t^{\mathcal{K}} = rac{1}{artheta_t} q_t^{\mathcal{B}}$$

• Combining the previous:

$$u_{t} = \frac{1}{a} \left(\rho \frac{q_{t}^{B}}{\vartheta_{t}} + \iota \left(\frac{1 - \vartheta_{t}}{\vartheta_{t}} q_{t}^{B} \right) \right)$$

Shock Transmission under Flexible Prices – Impact Effect

$$u_{t} = \frac{1}{a} \left(\rho \frac{q_{t}^{B}}{\vartheta_{t}} + \iota \left(\frac{1 - \vartheta_{t}}{\vartheta_{t}} q_{t}^{B} \right) \right)$$

Shock: $\tilde{\sigma}_t \uparrow \rightarrow \vartheta_t \uparrow$

- ightarrow Lower capital price and investment: $q_t^{\mathcal{K}}\downarrow$ $\iota_t\downarrow$
- \rightarrow Bond value $q_t^B = B_t/P_t/K_t$ rises to increase consumption demand
- \Rightarrow Downward adjustment in price level P_t on impact brings demand back in line with supply

Note: closed-form solutions for $q^{\scriptscriptstyle B}$ and $q^{\scriptscriptstyle K}$

$$q_t^{K, \text{flex}} = \left(\frac{a^2}{\rho \overline{\delta}} \frac{\varepsilon - 1}{\varepsilon}\right)^{1/2} (1 - \vartheta_t)^{1/2}, \qquad \qquad q_t^{B, \text{flex}} = \left(\frac{a^2}{\rho \overline{\delta}} \frac{\varepsilon - 1}{\varepsilon}\right)^{1/2} \frac{\vartheta_t}{(1 - \vartheta_t)^{1/2}}$$

Shock Transmission under Sticky Prices – Impact Effect

$$u_{t} = \frac{1}{a} \left(\rho \frac{q_{t}^{B}}{\vartheta_{t}} + \iota \left(\frac{1 - \vartheta_{t}}{\vartheta_{t}} q_{t}^{B} \right) \right)$$

• All terms on right-hand side are already determined

- ϑ_t by portfolio choice separation (only depends on $\tilde{\sigma}$ path)
- q_t^B is a state variable under sticky prices
- \Rightarrow Demand is completely rigid on impact, unable to adjust
- \Rightarrow Supply (utilization u_t) must clear goods market

- \bullet Portfolio separation result: ϑ_t rises as fast as under flexible prices
- Stickiness of bond value: q_t^B unaffected by shock, whereas $q_t^{B,\mathit{flex}}$ \uparrow
- Consequence: capital price *overshoots* relative to flexible price response
 q^K_t = (1 ϑ_t)/ϑ_t · q^B_t falls by more under sticky prices
- Reminiscent of Dornbusch's (1976) overshooting model
 - $\bullet\,$ original: sticky domestic price \rightarrow volatile exchange rate
 - $\bullet\,$ here: sticky bond value \rightarrow volatile capital price

Shock Transmission under Sticky Prices – Adjustment Dynamics

- After shock, gradual deflation slowly increases q_t^B
- Dynamics guided by two equations (ignoring future shocks for simplicity)
 Phillips curve (forward looking):

$$d\pi_t = \left(
ho\pi_t - rac{arepsilon}{\kappa} \left(a p_t^R - a p^{R, \mathit{flex}}
ight)
ight) dt$$

• Bond value evolution (backward looking):

$$dq_t^B = \left(i_t - \pi_t + \breve{\mu}_t^B - g_t\right) dt$$

Note: p_t^R and g_t are functions of $u_t = u(q_t^B, \vartheta_t)$

• Interest rate policy i_t can affect speed of adjustment dynamics

An Economy without Nominal Bonds

- Consider economy with $B_t \equiv 0$
- Demand equation

• Effects of shock depend on effects on return on capital:

$$r_t^K = r_t^f + risk premium$$

- $\tilde{\sigma}_t \uparrow \Rightarrow$ risk premium \uparrow • $r_t^f = i_t - \pi_t$ effectively controlled by monetary policy
- If policy fails to engineer sufficient reduction in r_t^f (e.g. Basu, Bundick 2017) $\tilde{\sigma}_t \uparrow \Rightarrow r_t^K \uparrow \Rightarrow q_t^K \downarrow \Rightarrow u_t \downarrow$

Shock Amplification with Safe Assets

A Cleaner Comparison: Two Units of Account

- Issue with previous comparison: B = 0 economy also has no safe assets
- Affects model dynamics even in the absence of price setting frictions
- Cleaner (but artificial!) comparison to highlight what matters: two units of account
 - good prices are quoted in "goods dollars", subject to price setting frictions
 - bonds are quoted in "bond dollars", adjust flexibly
- Also that model behaves close to B = 0 economy (exchange rate between two units of accounts does most of the adjustment)
- ⇒ What really matters: safe asset is denominated in sticky unit of account

Outline

1 Model

• Setup

• Numerical Example

2 Transmission of Uncertainty Shocks

- Separation of Portfolio Choice
- Shock Transmission under Flexible and Sticky Prices
- Comparison to Models without Safe Assets

3 Policy

- Without safe assets: can implement flexible price allocation
 - policy prescription: $i_t = r_t^{f,n}$ & appropriate equilibrium selection (e.g. Taylor rule)
 - divine coincidence: $\pi_t = 0$ and zero output gaps
- Conclusion from such models: flight to safety is (mostly) a problem at ZLB
- With safe assets: ineffectiveness of interest rate policy (on impact)
 - $\bullet\,$ changes in i_t do not affect the impact effects of the shock
 - but interest rate policy can speed up the recovery
 - Remark: $i_t = r_t^{f,n}$ is still possible, but does not result in zero inflation/output gaps

How Can Policy Stabilize Demand on Impact?

- Manage safe asset demand by distorting portfolio choice
 - use policy instrument $\breve{\mu}^B_t$ (requires adjustments in surplus-debt ratio)
 - may not be optimal (optimal $\check{\mu}_t^B$ to correct pecuniary externalities depends on $\tilde{\sigma}_t$)
- One of the second second second safe asset whose value is not sticky
 - Iong-term bonds
 - monetary policy can adjust bond value through expected future rates
 - but: cannot control i_t and q_t^B independently
 - $\rightarrow\,$ insufficient to implement flexible price allocation
 - use lump-sum transfers
 - PV of lump-sum transfers is alternative safe asset
 - agents only care about total quantity of safe assets (bonds plus PV of transfers)
 - $\rightarrow\,$ can adjust PV of transfers to absorb variations in safe asset demand at constant bond values

Conclusion

- New Keynesian model with (nominal) safe assets
 - uncertainty shocks lead to flight to safety (portfolio reallocation towards bonds)
 - safe asset stock becomes a state variable
- Shock transmission:
 - rigid safe asset supply and separate portfolio choice generate demand shortage
 - amplification through capital price overshooting
 - interest rate policy can only affect recovery, not depth of initial recession
- [In paper] Coordinated monetary-fiscal policy can implement constrained optimal allocation
 - optimal portfolio distortion independent of price stickiness
 - combination of natural rate policy and lump-sum transfers eliminate sticky price distortions