Princeton Initiative: Macro, Money, and Finance 2023 Fiscal Theory of the Price Level (FTPL) without and with Bubbles

Sebastian Merkel

September 8, 2023

1

Key Issue in Monetary Eocnomics: Price Level Determination

- Fundamental questions in monetary economics:
 - what determines the price level (the value of money)?
 - how do policy choices affect the price level/inflation?
- Classic monetarist answer: money supply and demand
 - \rightarrow monetary authority can determine price level/inflation by setting money supply
- Issues with this answer:
 - Sargent-Wallace 1981: fiscal considerations may matter
 - monetary authority may be forced to create money to supply seigniorage revenues
 - 2 in many modern models: money is endogenous due to interest rate policy
 - leads to nominal indeterminacy: no nominal anchor that determines the price level

Fiscal Theory of the Price Level (FTPL)

- FTPL points out systematic link between fiscal policy and nominal goods prices
 - for a government that issues nominal debt denominated in its own currency
 - and is committed to not default on nominal liabilities (this can be relaxed)
- If fiscal policy is conducted in a certain way, can render the price level determinate
- But even more generally: FTPL relationship always present in macro models
 → there a important fiscal requirements for "monetary" policy goals such as price stability
- Sims (1994): "In a fiat-money economy, inflation is a fiscal phenomenon, even more fundamentally than it is a monetary phenomenon."
- This Lecture
 - Introduction to basic FTPL
 - Connection with Sargent, Wallace (1981)
 - FTPL with a Bubble (Brunnermeier, Merkel, Sannikov 2023)

1 FTPL without Bubbles

2 Sargent and Wallace's Unpleasant Arithmetic

FTPL without Bubbles

2 Sargent and Wallace's Unpleasant Arithmetic

3 FTPL with a Bubble

Simple AK Economy Model: Preferences, Technology, Market Clearing

• Household preferences ($i \in [0, 1]$)

$$\mathbb{E}\left[\int_0^\infty e^{-\rho t}\log c_t^i dt\right]$$

- Each agent i manages capital k_t^i
 - production flow $y_t^i dt = k_t^i dt$
 - capital tax levied by government $au_t k_t^i dt$ (equivalent to lump-sum tax)
 - no investment, no depreciation, no idiosyncratic risk, $dk_t^i = k_t^i d\Delta_t^{k,i}$
 - traded on capital markets at (real) price q_t^K
- Aggregates and market clearing
 - normalize $K_t := \int k_t^i di = 1$
 - goods market clearing $C_t := \int c_t^i di = \int y_t^i di =: Y_t = 1$

Simple AK Economy Model: Government

- Government issues nominal bonds
 - nominal face value \mathcal{B}_t , evolution $d\mathcal{B}_t = \mu_t^{\mathcal{B}} \mathcal{B}_t dt$
 - initial debt $\mathcal{B}_0>0$ given (state variable of the model)
 - pays (floating) interest i_t
 - real value $q_t^B := \mathcal{B}_t / \mathcal{P}_t$
- Interest paid with new bonds or taxes τ_t
- Nominal budget constraint

$$egin{aligned} &\mu_t^{\mathcal{B}} \mathcal{B}_t + \mathcal{P}_t au_t &\Rightarrow &\mu_t^{\mathcal{B}} = eta_t - rac{ au_t}{q_t^B} \end{aligned}$$

• A feasible government policy specifies i_t , $\mu_t^{\mathcal{B}}$, τ_t – possibly contingent on histories $\{q_s^B, q_s^K\}_{s=0}^t$ – such that this constraint always holds

example: fix $i_t, \tau_t \geq$ 0, adjust $\mu_t^{\mathcal{B}}$ to satisfy the constraint

Model Solution: Household Problem and Optimal Choice Conditions

• Household *i* chooses $\{c_t^i\}$, $\{\theta_t^i\}$ to maximize utility subject to net worth evolution

$$dn_t^i = -c_t^i dt + n_t^i \left(heta_t^j dr_t^\mathcal{B} + (1- heta_t^i) dr_t^\mathcal{K}
ight)$$

with returns

$$dr_t^{\mathcal{B}} = \left(\frac{\tau_t}{q_t^{\mathcal{B}}} + \mu_t^{q,\mathcal{B}}\right) dt \qquad \qquad dr_t^{\mathcal{K}} = \left(\frac{1 - \tau_t}{q_t^{\mathcal{K}}} + \mu_t^{q,\mathcal{K}}\right) dt$$

- Optimal consumption choice:
 - consume constant fraction of wealth, $c_t^i =
 ho n_t^i$
- Optimal portfolio choice (no arbitrage): for interior θ_t^i

$$dr_t^{\mathcal{B}} = dr_t^{\mathcal{K}} \Leftrightarrow \mu_t^{q, \mathcal{B}} - \mu_t^{q, \mathcal{K}} = \frac{1 - \tau_t}{q_t^{\mathcal{K}}} - \frac{\tau_t}{q_t^{\mathcal{B}}}$$

• relates expected appreciation of relative price q_t^B/q_t^K to difference in payout yields

Optimal Portfolio Choice in Equilibrium

• Rewriting portfolio choice in terms of $\vartheta_t := q_t^B / (q_t^B + q_t^K)$:

$$\mu_t^\vartheta = \rho \frac{\vartheta_t - \tau_t}{\vartheta_t}$$

• Integrating forward in time and imposing asset market clearing (artheta= heta)

$$heta_t = artheta_t = \int_t^\infty
ho e^{-
ho(s-t)} au_s ds$$

• In words: equilibrium portfolio weight on bonds is a weighted average of future taxes

- *Remark*: in more general model, need to replace τ_t with ratio of primary surpluses to output
- Example: $\tau_t = \tau$ constant; then $\vartheta_t = \tau$ for all t

Remark: Portfolio Choice and Debt Valuation

• The portfolio choice condition

$$\vartheta_t = \int_t^\infty \rho e^{-\rho(s-t)} \tau_s ds$$

is equivalent to a debt valuation equation

$$\frac{\mathcal{B}_t}{\mathcal{P}_t} = q_t^{\mathcal{B}} = \int_t^\infty \exp\left(-\int_t^s r_u du\right) \tau_s ds$$

- To derive latter: multiply by $q_t^B + q_t^K$ plus some algebra
- Interpretation: households willing to absorb any amount of bonds as long as they expect sufficient future taxes to back them

Price Level Determination

- Have just seen: fiscal policy (τ_t) affects portfolio choice $(\theta_t = \vartheta_t)$ and thus relative asset valuations (q_t^B/q_t^K)
- What determines *level* of asset prices q_t^K , q_t^B ?

 \rightarrow consumption-savings choice and wealth effects (& goods market clearing)

• goods market clearing:

$$1 = C_t =
ho(q_t^B + q_t^K) =
ho rac{q_t^B}{artheta_t}$$

• solving for q_t^B

$$\frac{\mathcal{B}_t}{\mathcal{P}_t} = q_t^B = \frac{\vartheta_t}{\rho}$$

• This is a condition for the equilibrium price level \mathcal{P}_t (because \mathcal{B}_t is a pre-determined state variable)

Interpretation: Portfolio Choice can Determine the Price Level

- Previous result suggests: portfolio choice can determine the price level when there are nominal assets
- Economic logic, for given ϑ_t
 - \mathcal{P}_t too high \rightarrow total wealth q_t^B/ϑ_t too low \rightarrow insufficient goods demand \rightarrow price level falls
 - \mathcal{P}_t too low \rightarrow total wealth q_t^B/ϑ_t too high \rightarrow excess goods demand \rightarrow price level rises
- Key to this logic: some asset value is fixed in nominal terms (here bonds)
- Also: logic may break down if ϑ_t reacts to \mathcal{P}_t (because future $\tau_t s$ do) (will consider this issue later)

- Nominal government bonds and tax policy play a key role in previous argument
 - tax policy determines portfolio choice and relative asset prices (ϑ_t)
 - q_t^B and total wealth are inversely linked to \mathcal{P}_t because bonds are nominal
- The idea is therefore called the Fiscal Theory of the Price Level (FTPL)

Equilibrium Selection

- Discussion so far: focus on a given equilibrium
 - equilibrium equations that pin down the price level (portfolio choice and goods market clearing)
 - economic story about the equilibrating mechanism (wealth effects from nominal government bonds)
- Focus of most of the FTPL literature:
 - is the equilibrium unique?
 - or, if not: is there at least a unique price level prediction across equilibria?
- Whether FTPL can be used as a selection device depends on fiscal policy rule
 - "active" fiscal policy: taxes do not react (strongly) to stabilize debt
 - \rightarrow FTPL selects a unique price level
 - "passive" fiscal policy: taxes rise in response to rising debt levels
 - \rightarrow FTPL cannot select a unique price level

(active/passive terminology is due to Leeper 1991)

Illustration: Uniqueness with Active Fiscal Policy

• Example of active fiscal policy: constant $\tau_t = \tau$

(and some specification for i_t and $\mu_t^{\mathcal{B}}$ consistent with gov. budget constraint)

- Have seen before: portfolio choice and asset market clearing imply $\vartheta_t = \tau$
- Goods market clearing implies

$$\mathcal{P}_t = \frac{\rho}{\vartheta_t} \mathcal{B}_t = \frac{\rho}{\tau} \mathcal{B}_t,$$

 $ightarrow \mathcal{P}_t$ is uniquely determined as function of \mathcal{B}_t

- $\bullet~\mathcal{B}_0$ is a given state, so this determines \mathcal{P}_0 uniquely
- Can show further: also evolution of \mathcal{B}_t and thus \mathcal{P}_t uniquely determined

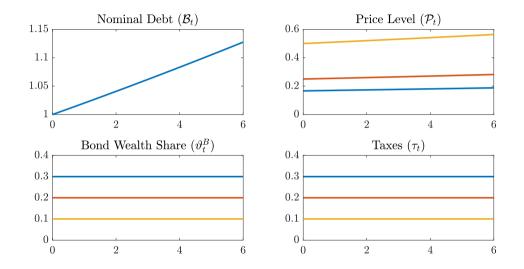
Illustration: Indeterminacy with Passive Fiscal Policy

- Example of a passive fiscal policy: τ_t = α/ρ · ϑ_t, α > 0 (similar to τ_t = αq^B_t, which is more natural but requires more algebra)
- Equation for ϑ_t then becomes

$$\vartheta_t = \int_t^\infty \rho e^{-
ho(s-t)} \tau_s ds = \int_t^\infty \alpha e^{-
ho(s-t)} \vartheta_s ds$$

- this has many solutions: $\vartheta_t = \vartheta_0 e^{(
 ho lpha)t}$ for any ϑ_0
- all these solutions are valid because $e^{ho t} artheta_t o 0$ ("transversality condition")
- <u>Corollary</u>: for this fiscal policy *any* initial portfolio weight ϑ_0 and price level \mathcal{P}_0 are consistent with some equilibrium
- But note: different equilibria are associated with different predictions for fiscal variables

Passive Policy with $\alpha = \rho$: Three Equilibria



What Is Special about Government Bonds?

- How is government debt special? What about other nominal assets in the economy? (e.g. private bonds, bank deposits, etc.)
 - **()** aggregate wealth effects require that these assets represent *net wealth* for private sector
 - If or uniqueness: an "active" policy is only feasible for the government
 - government's nominal debt represents liability to something it can create
 - it does not need to expend real resources to honor this liability
 - all other agents must expend real resources to service their nominal debt
- Remark: however, the following are not relevant for observation 2
 - that the government is a large player
 - that the government can tax other agents
 - that taxes are payable in money

1 FTPL without Bubbles

2 Sargent and Wallace's Unpleasant Arithmetic

3 FTPL with a Bubble

Relationship to Sargent and Wallace (1981)

- Sargent and Wallace (SW) point out that "even in an economy that satisfies monetarist assumptions [...] monetary policy cannot permanently control [...] inflation"
 - they consider an economy in which \mathcal{P} is fully determined by money demand ($v\mathcal{M} = \mathcal{P}Y$)
 - but the fiscal authority is "dominant": sets deficits independently of monetary policy actions
- SW emphasize seigniorage from money creation
 - fiscal needs determine the total present value of seigniorage
 - if monetary authority provides less now, it will be forced to provide more later
- Similarity with FTPL: SW also emphasize importance of fiscal policy for inflation
- Differences to FTPL:
 - seigniorage plays important role in SW but irrelevant for FTPL
 - FTPL about tax backing (primary surpluses), SW about funding deficits (negative surpluses)
 - SW about consistency of policy choices along an equilibrium path (no off-equilibrium actions)
 - price level determination in SW based on money demand, doesn't work with *i*-policy

Illustrating SW: Model Extension with Money

- Add money as a third asset to the model
 - nominal quantity \mathcal{M}_t , evolution $d\mathcal{M}_t = \mu_t^\mathcal{M} \mathcal{M}_t dt$
 - initial stock $\mathcal{M}_0 > 0$ given, $\mu_t^{\mathcal{M}} \ge 0$ controlled by monetary authority
 - does not pay interest
 - real value $q_t^M := \mathcal{M}_t / \mathcal{P}_t$
- Households face a payment constraint in production: $vm_t^i \ge \mathcal{P}_t y_t^i$ ($v > \rho$) (as in Merkel (2020) – isomorphic to consumption cash-in-advance constraint but formally simpler)
 - $\bullet\,$ if binding, then ${\cal P}=v{\cal M}$ in the aggregate \to tight link between money and price level
- Monetary authority transfers seigniorage $\sigma_t := \mu_t^{\mathcal{M}} q_t^{\mathcal{M}}$ to fiscal authority
- Budget constraint of fiscal authority

$$i_t \mathcal{B}_t = \mu_t^{\mathcal{B}} \mathcal{B}_t + \mathcal{P}_t \tau_t + \mathcal{P}_t \sigma_t \Rightarrow \mu_t^{\mathcal{B}} = i_t - \frac{\tau_t + \sigma_t}{q_t^{\mathcal{B}}}$$

 \rightarrow as before if we replace τ_t with $\tau_t + \sigma_t$

Model Solution for Binding Payment Constraint

- Let's assume that in equilibrium
 - the payment constraint is always binding
 - 2 taxes satisfy $\tau_t = -\delta$, $\delta \ge 0$ (constant deficit)
- Then nominal wealth shares must satisfy

$$\vartheta_t^M := \frac{q_t^M}{q_t^M + q_t^B + q_t^K} = \rho/\nu$$
$$\vartheta_t^B := \frac{q_t^B}{q_t^M + q_t^B + q_t^K} = \int_t^\infty \rho e^{-\rho(s-t)} (\tau_s + \sigma_s) \, ds$$
$$= \int_t^\infty \rho e^{-\rho(s-t)} \sigma_s \, ds - \delta$$

A Fiscally Dominant Regime

- Suppose after some time $T < \infty$ the fiscal authority can take control of $\mu_t^{\mathcal{M}}$
- It chooses seigniorage to keep debt constant, i.e.

$$\sigma_t = \hat{\sigma}(\vartheta^B_T) := \delta + \vartheta^B_T, \qquad t \ge T$$

(there are limits on feasible seigniorage but let's ignore this for simplicity)

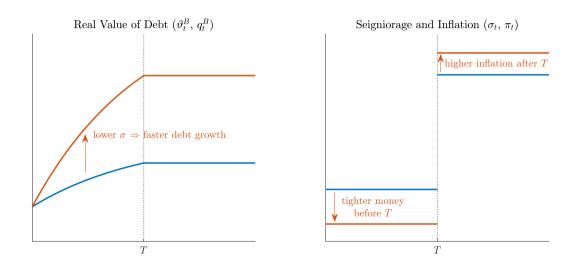
- For $t \leq T$, the monetary authority chooses (constant) $\mu^{\mathcal{M}}$ independently
 - then also $\sigma_t = \mu^{\mathcal{M}} q_t^{\mathcal{M}} = \mu^{\mathcal{M}} / v =: \sigma$ is controlled by the monetary authority
- <u>Proposition</u> ("unpleasant arithmetic"): tight money now means higher inflation eventually
 - specifically: the (constant) inflation rate over $[T,\infty)$ is strictly decreasing in μ^M over [0,T]

• Iterating government budget constraint forward in time and dividing by total wealth yields

$$\vartheta^B_T = \vartheta^B_0 + \int_0^T \rho e^{-\rho t} (\delta - \sigma) dt$$

- Tigher money over $[0, T] \Rightarrow$ lower seigniorage transfers $\sigma \Rightarrow$ debt grows faster
- Higher debt at T: need larger seigniorage thereafter to cover interest payments

• recall
$$\hat{\sigma}(\vartheta^B_T) = \delta + \vartheta^B_T$$
 is increasing in ϑ^B_T



Monetary Dominance

- Suppose $T = \infty$: monetary authority is always in control of the money supply
- Is there an equilibrium? (suppose also $\sigma \neq \vartheta_0^B + \delta$)
 - not with constant deficit $au_t = -\delta$
 - but: a constant deficit is not necessarily feasible policy

Two cases

 $\ \, {\rm 0} \ \, {\rm if} \ \, \sigma > \vartheta^B_0 + \delta {\rm ,} \ \, \tau_t = -\delta \ {\rm remains} \ {\rm feasible} \ \,$

- $\bullet\,$ but fiscal authority will absorb money over time, effective money supply is smaller than \mathcal{M}_t
- fiscal authority controls inflation (e.g. if real debt is kept constant, outcomes as if $\sigma = \vartheta_0^B + \delta$)
- 2 if $\sigma < \vartheta_0^B + \delta$, τ_t has to rise to avoid default on nominal bonds
 - fiscal authority effectively faces an "intertemporal budget constraint"
 - e.g. smallest constant tax is $\tau = \vartheta^B_0 \sigma$

• Remark: Here, gov. debt is like real/foreign currency debt - very different from FTPL

1 FTPL without Bubbles

2 Sargent and Wallace's Unpleasant Arithmetic

FTPL with Government Debt Bubble

- When $r \leq g$, rational bubbles may appear, including on government debt
- The valuation equation

$$rac{\mathcal{B}_t}{\mathcal{P}_t} = \mathbb{E}_t[PV(\mathsf{primary surpluses})]$$

emphasized by the FTPL no longer makes sense: may have a bubble term

- In addition: can raise seigniorage from "mining the bubble" even without money demand
- Questions:
 - (how) does the FTPL work in such environments?
 - how can the government ensure that the bubble is attached to its debt?
 - (in paper: when is bubble mining welfare-improving?)

Modified Model with Idiosyncratic Risk

- Return to the model without money, but introduce idiosyncratic risk
 - capital k_t^i of household *i* evolves according to

$$rac{dk_t^i}{k_t^i} = \underbrace{d\Delta_t^{k,i}}_{ ext{trading}} + \underbrace{ ilde{\sigma}d ilde{Z}_t^i}_{ ext{idio. shocks}}$$

- then bonds represent safe assets (provide service flows from re-trading)
- If σ sufficiently large: rational bubbles may emerge
 - $r =
 ho (ilde{\sigma}^c)^2$ lowered by precautionary savings motive
 - for $(\tilde{\sigma}^c)^2 \ge \rho$, we obtain $r \le 0 (=g)$, so that bubbles can exist

Does the FTPL still work?

- Recall: two FTPL incredients emphasized previously
 - Iscal policy affects portfolio demand for nominal government debt (relative asset prices)
 - 2 wealth effects on goods market determine price level (level of asset prices)
- Both ingredients are still present here
- Portfolio choice in this model yields

$$\vartheta_t = \underbrace{\int_t^{\infty} \rho e^{-\rho(s-t)} \tau_s ds}_{\text{"cash flow"}} + \underbrace{\int_t^{\infty} \rho e^{-\rho(s-t)} \frac{(1-\vartheta_s)^2 \tilde{\sigma}^2}{\rho} \vartheta_s ds}_{\text{"service flow"}}$$

 $\rightarrow \vartheta_t$ jointly determined by fiscal policy and safe asset demand

• Link between ϑ_t and \mathcal{P}_t as before

$$\mathcal{P}_t = \frac{\rho}{\vartheta_t} \mathcal{B}_t$$

- Previous discussion: FTPL link between fiscal policy and price level *in any given* equilibrium is still present
- But can fiscal policy also resolve equilibrium multiplicity?
 - two sources of multiplicity: (1) bubble multiplicity; (2) nominal indeterminacy
 - FTPL arguments can resolve both
 - off-equilibrium fiscal backing is sufficient
 - but requires credibility and fiscal capacity to promise off-equilibrium surpluses (otherwise: vulnerability to bubble crashes)

Resolving Equilibrium Multiplicity

- For "active" fiscal policy with $\tau > 0$:
 - there is a unique solution for ϑ (as in $\tilde{\sigma} = 0$ -case)
 - standard FTPL argument applies: unique \mathcal{P}_t consistent with equilibrium
 - but then r > g and there is no bubble in equilibrium
- Resolving multiplicity with an equilibrium bubble:
 - more challenging: continuum of bubble values consistent with the same tax path

 \Rightarrow exogenous tax sequence insufficient for uniqueness (and exogenous negative τ is also not feasible policy)

- contingent policy can select the bubble equilibrium
 - primary deficits on the equilibrium path (bubble mining)
 - switch to au > 0 if inflation breaks out

Some Formal Details: Differential Equation for Bond Wealth Share

• Differential version of previous portfolio choice equation (ODE)

$$\dot{artheta}_t = f(artheta_t)artheta_t -
ho au_t, \qquad f(artheta) :=
ho - (1 - artheta)^2 ilde{\sigma}^2$$

- Note that $f(\vartheta)$ is strictly increasing in $\vartheta \in [0,1]$
- Interpretation: conceptually, this is a backward equation
 - which expectations about path for ϑ_t rationalize today's value?
 - $\bullet\,$ only paths that remain in [0,1] can be consistent with an equilibrium
- Let's next contrast two simple policies:
 - constant $\breve{\mu}^{\mathcal{B}}$ $(\breve{\mu}^{\mathcal{B}}_t := \mu^{\mathcal{B}}_t i_t)$, implies $\tau_t = -\breve{\mu}^{\mathcal{B}} \frac{\vartheta_t}{\rho}$

 \rightarrow continuum of equilibria with $\vartheta_t \in [0, \vartheta^*]$ and $\dot{\vartheta}_t \leq 0$

• threshold policy: constant $\breve{\mu}^{\mathcal{B}}$ if $\vartheta_t \geq \underline{\vartheta}$, constant *positive* taxes $\tau > 0$ otherwise \rightarrow unique equilibrium with $\vartheta_t = \vartheta^*$

Illustration: Constant $\breve{\mu}^{\mathcal{B}}$

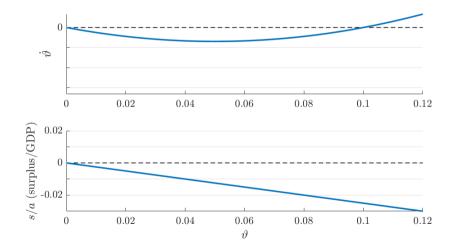
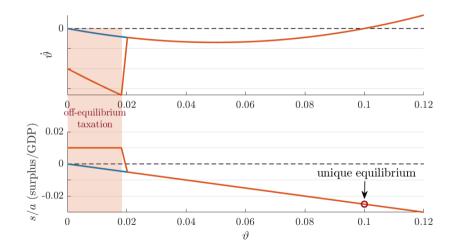


Illustration: Constant $\breve{\mu}^{\mathcal{B}}$ & Threshold Policy



Additional Uniqueness Arguments in Paper

Q Equilibrium selection still works in presence of alternative bubbly assets

- households can also trade "cryptocoins" instead of government bonds to self-insure against idiosyncratic risk
- 2 Equilibrium selection can work even under limited commitment
 - $\bullet\,$ even government with a short horizon wants to tax to create safe assets when ϑ is low
 - hence, off-equilibrium taxation may be credible even if governments can't commit
- Iternative policies to defend the bubble:
 - insolvency law, restrictions on using alternative assets, financial repression
 - these can complement off-equilibrium tax backing

Summary

- Fiscal Theory of the Price Level:
 - links portfolio demand for *nominal* government bonds to the general price level
 - within given equilibrium: relationship between fiscal variables and price level
 - equilibrium selection: "active" policy can render the nominal side of the economy determinate
- Relationship to Sargent Wallace (1981)
 - also about fiscal-monetary linkages but focuses on seigniorage from money
 - focused on restrictions on joint fiscal-monetary policy along equilibrium path
- FTPL with a bubble
 - bubble mining: government can extract seigniorage from debt growth directly
 - FTPL mechanisms still present
 - uniqueness requires off-equilibrium tax backing