Eco529: Modern Macro, Money, and International Finance Lecture 01: Introduction

Markus Brunnermeier

Princeton University

Fall, 2023

Introduction to Modern Macro, Money, and Finance

- Defining Macro-Finance
- Amplification, Persistence, Resilience
- Continuous Time Modeling

History of Macro and Finance

■ Verbal Reasoning (qualitative)

Fisher, Keynes, ...

Macro

- Growth theory
 - Dynamic (cts. time)
 - Deterministic

- Introduce stochastic
 - Discrete time
 - Brock-Mirman, Stokey-Lucas
 - DSGE models

Finance

- Portfolio theory
 - Static
 - Stochastic

- Introduce dynamics
 - Continuous time
 - Options Black Scholes
 - Term structure CIR
 - Agency theory Sannikov

• Cts. time macro with financial frictions

What is Macro-Finance?

- Macro: aggregate impact (resource allocation and constraint)
- Finance: risk allocation financial/contracting frictions, heterogeneous agents
 ⇒ institutions, liquidity
- Monetary: inside money creation
- How to design Financial Sector, Gov. bonds, etc. to achieve optional resource and risk allocation
- Topics include:
 - Amplification, peculation of shocks, resilience, financial cycle
 - Financial stability, spillovers, systemic risk measures
 - (Un)conventional central bank policy and balance sheet, maturity structure, CBDC
 - Capital flows

What is Macro-Finance?

2

Heterogeneous Agents

Lending-borrowing/insuring since agents are different

■ Poor-rich

■ Productive

Less patient

Less risk averse

More optimistic

Limited direct lending

■ Rich-poor

Less productive

More patient

More risk averse

More pessimistic

Friction p_sMRS_s different even after transactions

- Wealth distribution matters! (net worth of subgroups)
- Financial sector is not a veil

Financial Frictions and Distortions

- Belief distortions
 - Match "belief surveys"
- Incomplete markets:
 - "natural" leverage constraint (BruSan)
 - Costly state verification (BGG)
- + Leverage constraints (no "liquidity creation")
 - Exogenous limit (Bewley/Ayagari)
 - Collateral constraint
 - Next period's price (KM) $Rb_t \leq q_{t+1}k_t$
 - Next period's volatility (VaR,JG)
 - Current price
- Search Friction (*DGP*)

Financial Sector

- Financial sector helps to
 - overcome financing frictions and
 - channels resources
 - creates money
- ... but
 - Credit crunch due to adverse feedback loops & liquidity spirals
 - Non-linear dynamics
- New insights to monetary and international economics

Risk Premia, Price of Risk

- Risk premia = price of risk * (endogenous + exogenous risk)
 - Exogenous risk shock from outside
 - Endogenous risk
 - Amplification: adverse feedback loops
 - Multiple equilibria: Run, Sudden Stops
- Non-linearities are key for financial stability
 - Around vs. away from steady state

The 2 Components of Systemic Risk

- Systemic risk build-up during (credit) bubble
 and materializes in a crisis time-series
 - "Volatility Paradox" contemp. measures inappropriate
 - Vulnerability focus instead of timing focus
- 2. Spillovers/contagion
 - Direct contractual:
 - Indirect:

- cross sectional
- domino effect *network*price effect (fire-sale externalities)
 credit crunch, *liquidity* spirals

3. Persistence/Slow recovery

crisis management

preventive

Macro: Consumer vs. Finance Focused

- Consumption decision
 - Demand management at ZLB (liquidity trap) [interest rate drives c]
 - Expectation: but no risk premia [expectations hypothesis, UIP, ...]
 - Heterogeneity: wealth distribution across consumers (+ investors)
- Investment and portfolio decision Macro-finance
 - Risk-free rate and risk premia [term-risk, credit risk premia]
 - Risk-premia = price of risk * (exogenous risk + endogenous risk)

runs, sudden stops, spirals

- Δ price = $f(\Delta \mathbb{E}[\text{future cash flows}, \Delta \text{risk premia}])$
- Heterogeneity: wealth distribution across investors (+ consumers)

Cts.-time Macro: Macro-Finance vs HANK

Agents	Heterogenous investor focus - Net worth distribution (often discrete)	Heterogenous consumer focus - Net worth distribution (often cts.)
Tradition:	Finance (Merton) Portfolio and consumption choice Full/global dynamical system focused on non-linearities away from steady state (crisis) Length of recession is stochastic	DSGE (Woodford) Consumption choice Transition dynamics back to steady state Zero probability shock Length of recession is
Money due to:	Risk and Financial Frictions	deterministic Price stickiness
Risk	Risk and Financial Frictions	No aggregate risk (in HANK paper)
Price of risk:	Idiosyncratic and aggregate risk	N/A
Assets:	Capital, money, bonds with different risk profile Risk-return trade-off Liquidity-return trade-off Flight to safety	All assets are risk free No risk-return trade-off Liquidity-return trade-off

Policy: Objectives and Instruments

- Price stability Monetary policy
 - Macroprudential policy
 - Financial stability Fiscal debt sustainability **Fiscalpolicy**
 - Short-term interest
 - Policy rule (terms structure)
- Reserve requirements
 Taxes/subsidies
- capital/liquidity interrequirements
 - Collateral policy Margins/haircuts
 - Capital controls

Overview

- Defining Macro-Finance
- Amplification, Persistence, Resilience
- Continuous Time Modeling

Persistence and Resilience

- Even in standard real business cycle models, temporary adverse shocks can have long-lasting effects
- Due to feedback effects, persistence is much stronger in models with financial frictions
 - Bernanke & Gertler (1989)
 - Carlstrom & Fuerst (1997)
- Negative shocks to net worth exacerbate frictions and lead to lower capital, investment and net worth in future periods

Persistence Leads to Dynamic Amplification

- Static amplification occurs because fire-sales of capital from productive sector to less productive sector depress asset prices
 - Importance of market liquidity of physical capital
- Dynamic amplification occurs because a temporary shock translates into a persistent decline in output and asset prices
 - Forward grow net worth via retained earnings
 - Backward asset pricing

"Single Shock Critique"

- Critique: After the shock all agents in the economy know that the economy will deterministically return to the steady state.
 - Length of slump is deterministic (and commonly known)
 - No safety cushion needed
- In reality an adverse shock may be followed by additional adverse shocks
 - Build-up extra safety cushion for an additional shock in a crisis
- Impulse response vs. volatility dynamics

Endogenous Volatility & Volatility Paradox

■ Endogenous Risk/Volatility Dynamics in BruSan

Beyond Impulse responses

- Input: constant volatility
- Output: endogenous risk, time varying volatility
- ⇒ Precautionary savings
 - Role for money/safe asset
- ⇒ Nonlinearities in crisis ⇒ endogenous fait tails, skewness
- Volatility Paradox
 - Low exogenous (measured) volatility leads to high build-up of (hidden) endogenous volatility (Minksy)

Overview

- Defining Macro-Finance
- Amplification, Persistence, Resilience
- Continuous Time Modeling

Why Continuous Time Modeling?

- Time aggregation
 - Data come in different frequency
 - GDP quarterly
 - High frequency financial data
- Consumption
 - Same IES within and across periods
 - Discrete time consumption
 - IES/RA within period = ∞ , but across periods = $1/\gamma$
- Optimal Stopping problems no interger issues
- Sharp distinction between stock and flow (rate)
 - Beginning of period = end of period wealth
 - E.g. consumption = time-preference rate * end of period wealth

Brownian Motion dZ

■ Brownian Motion as a binomial tree over Δt .

$$0 \begin{array}{c} \int \sigma\sqrt{\Delta t} \\ \int -\sigma\sqrt{\Delta t} \end{array}$$

■ More steps with shrinking step size: $h_n = \sigma \sqrt{\Delta t/n}$

Itô Processes: Characterization, Skewness over Δt

■ Itô processes ... fully characterized by drift and volatility

$$dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dZ_t$$

- Arithmetic Itô's Process: $dX_t = \mu_{X,t} dt + \sigma_{X,t} dZ_t$
- Geometric Itô's Process: $dX_t = \mu_t^X X_t dt + \sigma_t^X X_t dZ_t$
- Characterization for full volatility dynamics on Prob.-space
 - Discrete time: Probability loading on states conditional expectations $\mathbb{E}[X|Y]$ difficult to handle
 - lacktriangle Cts. time Loading on a Brownian Motion $\mathrm{d} Z_t$ captured by σ
- Normal distribution for dt, yet with skewed distribution for $\Delta t > 0$

- If σ_t is time-varying
- E.g. from normal-dt to log-normal- Δt and vice versa (geometric dX_t .)

Continuity of Itô Processes

- Continuous path
 - Information arrives continuously "smoothly" not in lumps
 - Implicit assumption: can react continuously to continuous info flow
 - Never jumps over a specific point, e.g. insolvency point
 - Simplifies numerical analysis:
 - Only need change from grid-point to grid-point (since one never jumps beyond the next grid-points)
 - No default risk: Can continuously delever as wealth declines
 - Might embolden investors ex-ante
 - Collateral constraint
 - Discrete time: $b_t R_{t,t+1} \leq \min\{q_{t+1}\}k_t$
 - Cts. time: $b_t \leqslant (p_t + dp_t)k_t$

For short-term debt - not for long-term debt ... or if there are jumps

- Levy processes ... with jumps
 - Still price of risk * risk, but not linear

Conditional Expectations for Itô

- in discrete time: e.g. $\mathbb{E}_t[V(\eta)]$
 - Need function $V(\eta)$ across all states η
 - lacksquare Simulate η to obtain probability weights for η all realizations
- \blacksquare in continuous time with Itô: $\mathbb{E}[dV(\eta)] = V'(\eta)\mu_{\eta}\mathrm{d}t + \frac{1}{2}V''(\eta)\sigma_{\eta}^2dt$
 - Just need the two neighboring grid points instead of the whole function $\to V''(\eta)$

- $V'(\eta)$ is approximated by $\frac{V(\eta+\Delta)-V(\eta)}{\Delta}$ or $\frac{V(\eta)-V(\eta-\Delta)}{\Delta}$; $V''(\eta)$ by $\frac{V(\eta+\Delta)-V(\eta)-(V(\eta)-V(\eta-\Delta))}{\Delta^2}$
- Similar for price $q(\eta)$ Return equations: requires only slope of price function $q(\eta)$ to determine amplification instead of whole price function across all η in discrete time.

Dynamic Portfolio Choice in Continuous Time

Portfolio choice - tension in discrete time

Linearize

- kills σ -term, all assets are equivalent
- lacksquare 2nd order approximation kills time-varying σ
- Log-linearize à la Campbell-Shiller
- As $\Delta t \rightarrow 0$ (log) returns converge to normal distribution
 - Constantly adjust the approximation point
 - Nice formula for portfolio choice for Ito process

Consumption Choice & Wealth (Share) Dynamics

- Consumption choice
 - Nice Process
 - consumption/wealth ratio is constant for log-utility, e.g. for log-utility $c_t = \rho N_t$
 - Beginning = end of period net worth/wealth
- Evolution of state variables wealth (shares)/distribution
 - Nice Characterization
 - Evolution of distributions (e.g. wealth distribution) characterized by Kolmogorov Forward Equation (Fokker-Planck equation)

Conclusion

- Defining Macro-Finance
- "Run-up", "Crisis", and "Recovery"-mechanisms
 - Belief-focused (representative + heterogeneous)
 - Friction-focused, where risk is central
- Risk concentration, fire-sales, spillovers, ...
- Paradox of Prudence
- Volatility Paradox
 - Mean-Amplification, Endogenous. Volatility Dynamics
 - Resilience
- Advantages of Continuous Time Modelling