Introduction to Modern Macro, Money, and Finance

- Defining Macro-Finance
- Amplification, Persistence, Resilience
- Continuous Time Modeling
History of Macro and Finance

Macro
- Growth theory
 - Dynamic (cts. time)
 - Deterministic
- Introduce stochastic
 - Discrete time
 - Brock-Mirman, Stokey-Lucas
 - DSGE models

Finance
- Portfolio theory
 - Static
 - Stochastic
- Introduce dynamics
 - Continuous time
 - Options Black Scholes
 - Term structure CIR
 - Agency theory Sannikov

- Cts. time macro with financial frictions

Verbal Reasoning (qualitative)
- Fisher, Keynes, ...
What is Macro-Finance?

- **Macro**: aggregate impact (resource allocation and constraint)
- **Finance**: risk allocation
 - financial/contracting frictions, heterogeneous agents
 - institutions, liquidity
- **Monetary**: inside money creation

- **How to design** Financial Sector, Gov. bonds, etc.
 - to achieve optional resource and risk allocation

- **Topics include**:
 - Amplification, peculation of shocks, resilience, financial cycle
 - Financial stability, spillovers, systemic risk measures
 - (Un)conventional central bank policy and balance sheet, maturity structure, CBDC
 - Capital flows
What is Macro-Finance?
Heterogeneous Agents

- Lending-borrowing/insuring since agents are different
 - Poor-rich
 - Productive
 - Less patient
 - Less risk averse
 - More optimistic
 - Rich-poor
 - Less productive
 - More patient
 - More risk averse
 - More pessimistic

- Friction $p_s MRS_s$ different even after transactions
- Wealth distribution matters! (net worth of subgroups)
- Financial sector is not a veil
Financial Frictions and Distortions

- Belief distortions
 - Match “belief surveys”

- Incomplete markets:
 - “natural” leverage constraint (*BruSan*)
 - Costly state verification (*BGG*)

- Leverage constraints
 - + Exogenous limit (Bewley/Ayagari)
 - Collateral constraint
 - Next period’s price (KM)
 - Next period’s volatility (VaR, JG)
 - Current price

- Search Friction (DGP)

\[
Rb_t \leq q_{t+1} k_t
\]
Financial Sector

- Financial sector helps to
 - overcome financing frictions and
 - channels resources
 - creates money

- ... but
 - Credit crunch due to adverse feedback loops & liquidity spirals
 - Non-linear dynamics

- New insights to monetary and international economics
Risk Premia, Price of Risk

- Risk premia = price of risk * (endogenous + exogenous risk)
 - Exogenous risk – shock from outside
 - Endogenous risk
 - Amplification: adverse feedback loops
 - Multiple equilibria: Run, Sudden Stops

- Non-linearities are key for financial stability
 - Around vs. away from steady state
The 2 Components of Systemic Risk

1. Systemic risk build-up during (credit) bubble ... and materializes in a crisis – *time-series*
 - “Volatility Paradox” contemp. measures inappropriate
 - Vulnerability focus instead of timing focus

2. Spillovers/contagion – *cross sectional*
 - Direct contractual: domino effect – *network*
 - Indirect: price effect (fire-sale externalities) credit crunch, *liquidity* spirals

3. Persistence/Slow recovery
Macro: Consumer vs. Finance Focused

Consumption decision
- Demand management at ZLB (liquidity trap) [interest rate drives consumption]
- Expectation: but no risk premia [expectations hypothesis, UIP, ...]
- Heterogeneity: wealth distribution across consumers (+ investors)

Investment and portfolio decision - Macro-finance
- Risk-free rate and risk premia [term-risk, credit risk premia]
- Risk-premia = price of risk * (exogenous risk + endogenous risk)
 \[\Delta \text{price} = f(\Delta E[\text{future cash flows}, \Delta \text{risk premia}]) \]
- Heterogeneity: wealth distribution across investors (+ consumers)
Cts.-time Macro: Macro-Finance vs HANK

<table>
<thead>
<tr>
<th>Agents</th>
<th>Heterogenous investor focus</th>
<th>Heterogenous consumer focus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Net worth distribution (often discrete)</td>
<td>- Net worth distribution (often cts.)</td>
</tr>
</tbody>
</table>

Tradition:
- Finance (Merton)
 - Portfolio and consumption choice
 - Full/global dynamical system
 - Focused on non-linearities away from steady state (crisis ...)
 - Length of recession is stochastic

- DSGE (Woodford)
 - Consumption choice
 - Transition dynamics back to steady state
 - Zero probability shock
 - Length of recession is deterministic

Money due to:
- Risk and Financial Frictions
 - Risk
 - Price stickiness
 - No aggregate risk (in HANK paper)

Price of risk:
- Idiosyncratic and aggregate risk
 - N/A

Assets:
- Capital, money, bonds with different risk profile
 - Risk-return trade-off
 - Liquidity-return trade-off
 - Flight to safety

- All assets are risk free
 - No risk-return trade-off
 - Liquidity-return trade-off
Policy: Objectives and Instruments

- **Price stability**
 - Monetary policy
 - Short-term interest
 - Policy rule (terms structure)

- **Financial stability**
 - Macroprudential policy
 - Reserve requirements
 - Capital/liquidity requirements
 - Collateral policy
 - Margins/haircuts
 - Capital controls

- **Fiscal debt sustainability**
 - Fiscal policy
 - Taxes/subsidies

STABILITY
Overview

- Defining Macro-Finance
- Amplification, Persistence, Resilience
- Continuous Time Modeling
Persistence and Resilience

- Even in standard real business cycle models, temporary adverse shocks can have long-lasting effects.
- Due to feedback effects, persistence is much stronger in models with financial frictions.
 - Bernanke & Gertler (1989)
 - Carlstrom & Fuerst (1997)
- Negative shocks to net worth exacerbate frictions and lead to lower capital, investment, and net worth in future periods.
Persistence Leads to Dynamic Amplification

- **Static** amplification occurs because fire-sales of capital from productive sector to less productive sector depress asset prices
 - Importance of *market liquidity* of physical capital
- **Dynamic** amplification occurs because a temporary shock translates into a persistent decline in output and asset prices
 - Forward: grow net worth via retained earnings
 - Backward: asset pricing
“Single Shock Critique”

- Critique: After the shock all agents in the economy know that the economy will deterministically return to the steady state.
 - Length of slump is deterministic (and commonly known)
 - No safety cushion needed
- In reality an adverse shock may be followed by additional adverse shocks
 - Build-up extra safety cushion for an additional shock in a crisis
- Impulse response vs. volatility dynamics
Endogenous Volatility & Volatility Paradox

- Endogenous Risk/Volatility Dynamics in BruSan
 - Beyond Impulse responses
 - Input: constant volatility
 - Output: endogenous risk, time varying volatility
 - Precautionary savings
 - Role for money/safe asset
 - Nonlinearities in crisis ⇒ endogenous fat tails, skewness

- Volatility Paradox
 - Low exogenous (measured) volatility leads to high build-up of (hidden) endogenous volatility (Minsky)
Fan Charts & Endogenous Volatility Dynamics

lecture_slides/lec1/figs/XXX_a.png
Overview

- Defining Macro-Finance
- Amplification, Persistence, Resilience
- Continuous Time Modeling
Why Continuous Time Modeling?

- Time aggregation
 - Data come in different frequency
 - GDP quarterly
 - High frequency financial data

- Consumption
 - Same IES within and across periods
 - Discrete time consumption
 - IES/RA within period \(= \infty \), but across periods \(= 1/\gamma \)

- Optimal Stopping problems - no integer issues

- Sharp distinction between stock and flow (rate)
 - Beginning of period = end of period wealth
 - E.g. consumption = time-preference rate * end of period wealth
Brownian Motion dZ

- Brownian Motion as a binomial tree over Δt.
- More steps with shrinking step size: $h_n = \sigma \sqrt{\Delta t/n}$
Itô Processes: Characterization, Skewness over Δt

- Itô processes ... fully characterized by drift and volatility
 \[dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dZ_t \]
 - Arithmetic Itô’s Process: \[dX_t = \mu X_t dt + \sigma X_t dZ_t \]
 - Geometric Itô’s Process: \[dX_t = \mu_t X_t dt + \sigma_t X_t dZ_t \]

- Characterization for full volatility dynamics on Prob.-space
 - Discrete time: Probability loading on states
 conditional expectations $E[X|Y]$ difficult to handle
 - Cts. time Loading on a Brownian Motion dZ_t captured by σ

- Normal distribution for dt, yet with skewed distribution for $\Delta t > 0$

- If σ_t is time-varying
- E.g. from normal-dt to log-normal-Δt and vice versa (geometric dX_t.)

Markus.Economicus@gmail.com MacroFinance Fall, 2023 23 / 28
Continuity of Itô Processes

- Continuous path
 - Information arrives continuously “smoothly” - not in lumps
 - Implicit assumption: can react continuously to continuous info flow
 - Never jumps over a specific point, e.g. insolvency point
 - Simplifies numerical analysis:
 - Only need change from grid-point to grid-point (since one never jumps beyond the next grid-points)
 - No default risk: Can continuously delever as wealth declines
 - Might embolden investors ex-ante
 - Collateral constraint
 - Discrete time: \(b_t R_{t,t+1} \leq \min\{q_{t+1}\} k_t \)
 - Cts. time: \(b_t \leq (p_t + dp_t) k_t \rightarrow 0 \)
 \(\text{For short-term debt – not for long-term debt ... or if there are jumps} \)

- Levy processes ... with jumps
 - Still price of risk * risk, but not linear
Conditional Expectations for Itô

- in discrete time:
 - e.g. \(\mathbb{E}_t[V(\eta)] \)
 - Need function \(V(\eta) \) across all states \(\eta \)
 - Simulate \(\eta \) to obtain probability weights for \(\eta \) all realizations

- in continuous time with Itô:
 \[
 \mathbb{E}[dV(\eta)] = V'(\eta) \mu_\eta \, dt + \frac{1}{2} V''(\eta) \sigma^2_\eta \, dt
 \]
 - Just need the two neighboring grid points instead of the whole function \(\rightarrow V''(\eta) \)

\[\text{ } \]
\[\begin{align*}
\begin{array}{c}
V'(\eta) \text{ is approximated by } \frac{V(\eta+\Delta)-V(\eta)}{\Delta} \text{ or } \frac{V(\eta)-V(\eta-\Delta)}{\Delta} ; \hfill \\
V''(\eta) \text{ by } \frac{V(\eta+\Delta)-V(\eta)-(V(\eta)-V(\eta-\Delta))}{\Delta^2} \hfill
\end{array}
\end{align*}\]

- Similar for price \(q(\eta) \)
 - Return equations: requires only slope of price function \(q(\eta) \) to determine amplification instead of whole price function across all \(\eta \) in discrete time.
Dynamic Portfolio Choice in Continuous Time

- **Portfolio choice** - tension in discrete time

 \[R_t R_{t+1} \ldots = e^{r_t + r_{t+1} + \ldots} \]
 log-normal returns

- **Portfolio**

 \[\theta^1_t R_t^1 + \theta^2_t R_t^2 + \ldots \]

 normal returns

- Linearize \(\sigma \)-term, all assets are equivalent
- 2nd order approximation \(\sigma \) kills time-varying \(\sigma \)
- Log-linearize à la Campbell-Shiller

- As \(\Delta t \to 0 \) (log) returns converge to normal distribution

 - Constantly adjust the approximation point
 - Nice formula for portfolio choice for Ito process
Consumption Choice & Wealth (Share) Dynamics

- Consumption choice
 - Nice Process
 - consumption/wealth ratio is constant for log-utility, e.g. for log-utility
 \[c_t = \rho N_t \]
 - Beginning = end of period net worth/wealth

- Evolution of state variables wealth (shares)/distribution
 - Nice Characterization
 - Evolution of distributions (e.g. wealth distribution) characterized by
 Kolmogorov Forward Equation (Fokker-Planck equation)
Conclusion

- Defining Macro-Finance
- “Run-up”, “Crisis”, and “Recovery”-mechanisms
 - Belief-focused (representative + heterogeneous)
 - Friction-focused, where risk is central
- Risk concentration, fire-sales, spillovers, . . .
- Paradox of Prudence
- Volatility Paradox
 - Mean-Amplification, Endogenous. Volatility Dynamics
 - Resilience
- Advantages of Continuous Time Modelling