Monetary Policy, Segmentation, and the Term Structure

Rohan Kekre Chicago Booth Moritz Lenel Princeton Federico Mainardi Chicago Booth

Princeton Initiative 2022

Monetary policy and the term structure

- Effect of change in short rates on (real) long rates is central to monetary transmission.
- Transmission operates in part through term premia.
 - Long rate = $\sum E[\text{short rates}] + \text{term premium}$.
 - Expansionary MP ⇒ long rates fall more than ∑ E[short rates].
 Cochrane-Piazzesi [02], Gertler-Karadi [15], Hanson-Stein [15],
 Abrahams-Adrian-Crump-Moench-Yu [16], Hanson-Lucca-Wright [21], ...
- Challenge to rationalize using existing models.
 - Rep. agent: MP shocks have negligible effects on term premia.
 - Preferred habitat: MP easing *raises* term premia.

Model	Analytical insights	Empirical evidence	Quantitative analysis	Conclusion
What we	do			

Propose a model of term structure consistent with effects of MP.

- As in preferred habitat tradition: habitat investors + arbs.
- As in intermediary AP tradition: arb wealth is state variable.
- Key mechanism: when arbs have positive duration, fall in short rate revalues wealth in arbs' favor and compresses term premia.
- \Rightarrow Quantitatively rationalizes MP effects on real term structure.
- ⇒ Implications beyond MP: return predictability, price volatility, and declining natural rate.

Related literature

- Preferred habitat models of term structure.
 Vayanos-Vila (21), Greenwood-Hanson-Stein (10), Guibaud-Nosbusch-Vayanos (13), Gourinchas-Ray-Vayanos (21), Greenwood-Hanson-Stein-Sunderam (20), Ray (21), ...
 Here: resolve counterfactual responses to short rate.
- Intermediary asset pricing and financial accelerator.
 Bernanke-Gertler-Gilchrist (99), He-Krishnamurthy (13), Brunnermeier-Sannikov (14), Haddad-Sraer [20], He-Nagel-Song [22], Schneider [22], ...

Here: application to term structure and monetary transmission.

• Term structure and "reaching for yield". Hanson-Stein (15), Hanson-Lucca-Wright (21).

Here: investors borrow more when yields fall.

Macro shocks, heterogeneity, and the price of risk.
 Alvarez-Atkeson-Kehoe (02,09), Caballero-Simsek (20,...), Kekre-Lenel (21,22).
 Here: analysis of bond market in preferred habitat environment.

• Continuous time t, ZCB with maturities $\tau \in (0, \infty)$.

- Continuous time t, ZCB with maturities $\tau \in (0,\infty)$.
- Habitat investors: $Z_t^{(\tau)} = -\alpha(\tau) \log \left(P_t^{(\tau)} \right) \theta_0(\tau) \theta_1(\tau) \beta_t.$

- Continuous time *t*, ZCB with maturities $\tau \in (0, \infty)$.
- Habitat investors: $Z_t^{(\tau)} = -\alpha(\tau) \log \left(P_t^{(\tau)} \right) \theta_0(\tau) \theta_1(\tau) \beta_t.$
- Arbitrageurs born and dying at rate ξ , solving:

$$v_t(w_t) = \max_{\{x_{t+s}^{(\tau)}\}_{\tau,s}} \mathbb{E}_t \int_0^\infty \exp(-\xi s) \log w_{t+s} ds$$

subject to
$$dw_t = r_t w_t dt + \int_0^\infty x_t^{(au)} \left(rac{d P_t^{(au)}}{P_t^{(au)}} - r_t dt
ight) d au.$$

- Continuous time t, ZCB with maturities $\tau \in (0,\infty)$.
- Habitat investors: $Z_t^{(\tau)} = -\alpha(\tau) \log \left(P_t^{(\tau)} \right) \theta_0(\tau) \theta_1(\tau) \beta_t.$
- Arbitrageurs born and dying at rate ξ , solving:

$$v_t(w_t) = \max_{\{x_{t+s}^{(\tau)}\}_{\tau,s}} \mathbb{E}_t \int_0^\infty \exp(-\xi s) \log w_{t+s} ds$$

subject to
$$dw_t = r_t w_t dt + \int_0^\infty x_t^{(\tau)} \left(\frac{dP_t^{(\tau)}}{P_t^{(\tau)}} - r_t dt \right) d\tau$$

• Market clearing: $Z_t^{(au)} + X_t^{(au)} = 0$ at each $au \in (0,\infty).$

- Continuous time t, ZCB with maturities $\tau \in (0,\infty)$.
- Habitat investors: $Z_t^{(\tau)} = -\alpha(\tau) \log \left(P_t^{(\tau)} \right) \theta_0(\tau) \theta_1(\tau) \beta_t.$
- Arbitrageurs born and dying at rate ξ , solving:

$$v_t(w_t) = \max_{\{x_{t+s}^{(\tau)}\}_{\tau,s}} \mathbb{E}_t \int_0^\infty \exp(-\xi s) \log w_{t+s} ds$$

subject to
$$dw_t = r_t w_t dt + \int_0^\infty x_t^{(\tau)} \left(\frac{dP_t^{(\tau)}}{P_t^{(\tau)}} - r_t dt \right) d\tau$$

- Market clearing: $Z_t^{(au)} + X_t^{(au)} = 0$ at each $au \in (0,\infty).$
- Real short rate: $dr_t = \kappa_r (\bar{r} r_t) dt + \sigma_r dB_{r,t}$.
- Habitat demand: $d\beta_t = -\kappa_\beta \beta_t dt + \sigma_\beta dB_{\beta,t}$.

Model	Analytical insights	Empirical evidence	Quantitative analysis	Conclusion

► Addt'l results

• First simplify to discrete time, two bonds traded $\tau = \{1, 2\}$.

Model	Analytical insights	Empirical evidence	Quantitative analysis	Conclusion
Simplif	fied environme	ent and equilibr	Addt'l results	

- First simplify to discrete time, two bonds traded $\tau = \{1, 2\}$.
- Given $\{r_t, \theta_t, W_t\}$, equilibrium described by six equations:

Model	Analytical insights	Empirical evidence	Quantitative analysis	Conclusion
Simplif	fied environme	nt and equilibr	ium • Addt'l results	

- First simplify to discrete time, two bonds traded $\tau = \{1, 2\}$.
 - Given $\{r_t, \theta_t, W_t\}$, equilibrium described by six equations:

$$r_{t+1}^{(2)} = -r_{t+1} - \log P_t,$$

woder	Analytical insights	Empirical evidence	Quantitative analysis	Conclusion
-				

Addt'l results

- First simplify to discrete time, two bonds traded $\tau = \{1, 2\}$.
- Given $\{r_t, \theta_t, W_t\}$, equilibrium described by six equations:

$$\begin{aligned} r_{t+1}^{(2)} &= -r_{t+1} - \log P_t, \\ E_t r_{t+1}^{(2)} &- r_t + \frac{1}{2} \sigma_r^2 \approx \frac{X_t}{W_t} \sigma_r^2; \end{aligned}$$

Model	Analytical insights	Empirical evidence	Quantitative analysis	Conclusion
-				

- Addt'l results
- First simplify to discrete time, two bonds traded $\tau = \{1, 2\}$.
- Given $\{r_t, \theta_t, W_t\}$, equilibrium described by six equations:

$$\begin{aligned} r_{t+1}^{(2)} &= -r_{t+1} - \log P_t, \\ E_t r_{t+1}^{(2)} &- r_t + \frac{1}{2} \sigma_r^2 \approx \frac{X_t}{W_t} \sigma_r^2, \\ X_t &= \alpha \log P_t + \theta_t, \end{aligned}$$

Model		Analytic	al insights	Empir	rical evide	nce	Quantitative analy	ysis	Conclusion
<u><u> </u></u>	1								

- Addt'l results
- First simplify to discrete time, two bonds traded $\tau = \{1, 2\}$.
- Given $\{r_t, \theta_t, W_t\}$, equilibrium described by six equations:

$$\begin{aligned} r_{t+1}^{(2)} &= -r_{t+1} - \log P_t, \\ E_t r_{t+1}^{(2)} &= r_t + \frac{1}{2} \sigma_r^2 \approx \frac{X_t}{W_t} \sigma_r^2, \\ X_t &= \alpha \log P_t + \theta_t, \\ W_{t+1} &= \exp(-\xi) \left[W_t \exp(r_t) + X_t \left(\frac{\exp(-r_{t+1})}{P_t} - \exp(r_t) \right) \right] + (1 - \exp(-\xi)) \, \bar{W}, \end{aligned}$$

Model		Analytic	al insights	Empiri	cal eviden	ice	Quantitative a	nalysis	Conclusion
<u><u> </u></u>	1. 0.								

Addt'l results

- First simplify to discrete time, two bonds traded $\tau = \{1, 2\}$.
- Given $\{r_t, \theta_t, W_t\}$, equilibrium described by six equations:

$$\begin{split} r_{t+1}^{(2)} &= -r_{t+1} - \log P_t, \\ E_t r_{t+1}^{(2)} - r_t + \frac{1}{2} \sigma_r^2 \approx \frac{X_t}{W_t} \sigma_r^2, \\ X_t &= \alpha \log P_t + \theta_t, \\ W_{t+1} &= \exp(-\xi) \left[W_t \exp(r_t) + X_t \left(\frac{\exp\left(-r_{t+1}\right)}{P_t} - \exp\left(r_t\right) \right) \right] + (1 - \exp(-\xi)) \, \bar{W}, \\ r_{t+1} - \bar{r} &= (1 - \kappa_r) \left(r_t - \bar{r} \right) + \sigma_r \epsilon_{r,t+1}, \\ \theta_{t+1} - \bar{\theta} &= (1 - \kappa_\theta) \left(\theta_t - \bar{\theta} \right) + \sigma_\theta \epsilon_{\theta,t+1}, \end{split}$$

Model		Analytic	al insights	Empiri	ical evide	nce	Quantitative	analysis	Conclusion
<u>~</u> .	1								

- First simplify to discrete time, two bonds traded $\tau = \{1, 2\}$.
- Given $\{r_t, \theta_t, W_t\}$, equilibrium described by six equations:

$$\begin{split} r_{t+1}^{(2)} &= -r_{t+1} - \log P_t, \\ E_t r_{t+1}^{(2)} - r_t + \frac{1}{2} \sigma_r^2 \approx \frac{X_t}{W_t} \sigma_r^2, \\ X_t &= \alpha \log P_t + \theta_t, \\ W_{t+1} &= \exp(-\xi) \left[W_t \exp(r_t) + X_t \left(\frac{\exp\left(-r_{t+1}\right)}{P_t} - \exp\left(r_t\right) \right) \right] + (1 - \exp(-\xi)) \, \bar{W}, \\ r_{t+1} - \bar{r} &= (1 - \kappa_r) \left(r_t - \bar{r} \right) + \sigma_r \epsilon_{r,t+1}, \\ \theta_{t+1} - \bar{\theta} &= (1 - \kappa_\theta) \left(\theta_t - \bar{\theta} \right) + \sigma_\theta \epsilon_{\theta,t+1}, \end{split}$$

in six unknowns $\{r_{t+1}^{(2)}, P_t, X_t, W_{t+1}, r_{t+1}, \theta_{t+1}\}.$

• Next: effects of MP shock; additional results in paper.

Short rate shock with endogenous arb wealth (1/2)

• For simplicity, focus on responses around stoch. steady-state.

Short rate shock with endogenous arb wealth (1/2)

• For simplicity, focus on responses around stoch. steady-state.

Proposition

In response to a monetary shock

$$d \log W_t = -\exp(-\xi)\omega\sigma_r d\epsilon_{r,t},$$

where ω is the duration of arbitrageurs' wealth and satisfies $\omega \propto \frac{X}{W}$.

• Hence, arbs' wealth is revalued upwards if short rate falls and their portfolio has positive duration.

Short rate shock with endogenous arb wealth (2/2)

Proposition

The response of the one-period ahead forward rate to a monetary shock is

$$df_t = \left[\frac{1 - \kappa_r - \frac{1}{W}\alpha\sigma_r^2}{1 + \frac{1}{W}\alpha\sigma_r^2}\right] \sigma_r d\epsilon_{r,t},$$

- Yield falls as short rate falls and habitat investors borrow more.
- When $\xi \to \infty$, arbs' wealth is constant at \bar{W} .
 - Underreaction: $df_t < (1 \kappa_r)\sigma_r d\epsilon_{r,t} = dE_t r_{t+1}$ if $\alpha > 0$.

Short rate shock with endogenous arb wealth (2/2)

Proposition

The response of the one-period ahead forward rate to a monetary shock is

$$df_t = \left[\frac{1 - \kappa_r - \frac{1}{W}\alpha\sigma_r^2}{1 + \frac{1}{W}\alpha\sigma_r^2} + \exp(-\xi)\frac{\frac{1}{W}X\sigma_r^2}{1 + \frac{1}{W}\alpha\sigma_r^2}\omega\right]\sigma_r d\epsilon_{r,t},$$

- Yield falls as short rate falls and habitat investors borrow more.
- When $\xi \to \infty$, arbs' wealth is constant at \bar{W} .
 - Underreaction: $df_t < (1 \kappa_r)\sigma_r d\epsilon_{r,t} = dE_t r_{t+1}$ if $\alpha > 0$.
- When ξ finite arbs' wealth revalued upwards.
 - Overreaction: term premium falls if X/W sufficiently high vs. α .

- Regress the change in $\{f_t^{(\tau-1,\tau)}, W_t\}$ on $\Delta y_t^{(1)}$:
 - Δ evaluated around FOMC days between 1/2004 and 12/2016.
 - IV: change in Fed Funds futures in 30 minutes around meeting.
- Following Nakamura-Steinsson (18), focus on high-frequency IV because of other news even on FOMC days.
- Following Jarocinski-Karadi (20), focus on meetings around which $\Delta y_t^{(1)}$ and $\Delta sp500_t$ have opposite signs.
- Robust to all FOMC meetings, excl. 08/09 or LSAP news, IV.

- Bridges Hanson-Stein (15) and Nakamura-Steinsson (18).
- Inconsistent with existing preferred habitat models.

• Outcome: primary dealer equity index constructed using TAQ.

• 1pp increase in 1y yield \Rightarrow 8.8pp decline in dealer equity prices

• High-freq. response of equity prices needed for power.

• Outcome: primary dealer equity index constructed using TAQ.

• 1pp increase in 1y yield \Rightarrow 8.8pp decline in dealer equity prices

- High-freq. response of equity prices needed for power.
- Dealer balance sheet data support the duration mechanism.
 - Effects on forwards and equities decreasing in income gap.

· Generalizing simple model, equilibrium in full model given by

$$E_{t}\left(\frac{dP_{t}^{(\tau)}}{P_{t}^{(\tau)}}\right) - r_{t}dt = \frac{1}{W_{t}}\int_{0}^{\infty} X_{t}^{(\tau)}Cov_{t}\left(\frac{dP_{t}^{(\tau)}}{P_{t}^{(\tau)}}, \frac{dP_{t}^{(s)}}{P_{t}^{(s)}}\right)ds,$$

$$X_{t}^{(\tau)} = -Z_{t}^{(\tau)} = \alpha(\tau)\log\left(P_{t}^{(\tau)}\right) + \theta_{0}(\tau) + \theta_{1}(\tau)\beta_{t},$$

$$dW_{t} = W_{t}r_{t}dt + \int_{0}^{\infty} X_{t}^{(\tau)}\left[\frac{dP_{t}^{(\tau)}}{P_{t}^{(\tau)}} - r_{t}dt\right]d\tau + \xi(\bar{W} - W_{t})dt,$$

and evolution of driving forces.

• Solve numerically on discretized grid (τ, r, β, W) .

• Following VV (21):
$$\alpha(\tau) \equiv \alpha \exp^{-\delta_{\alpha}\tau}$$
,
 $\theta_0(\tau) \equiv \exp^{-\delta_{\alpha}\tau} - \exp^{-\delta_{\theta}\tau}$,
 $\theta_1(\tau) \equiv \exp^{-\delta_{\alpha}\tau} - \exp^{-\delta_{\theta}\tau}$.

Model	Analytical insights	Empirical evidence	Quantitative analysis	Conclusion
Calibra	tion			

	Description	Value	Moment	Target	Model						
Unc	Unconditional moments of yields and volumes										
ī	mean short rate	-0.001	$y_t^{(1)}$	0.06%	0.06%						
κ_r	mean rev. short rate	0.4	$\sigma(y_t^{(1)})$	1.66%	1.51%						
σ_r	std. dev. short rate	0.02	$\sigma(\Delta y_{t+1}^{(1)})$	1.75%	1.53%						
ξ	persistence arb. wealth	0.15	$y_t^{(20)} - y_t^{(1)}$	1.54%	1.61%						
κ_{eta}	mean rev. demand	0.05	$rac{1}{20}\sum_{ au=1}^{20}\sigma(y_t^{(au)})$	1.01%	1.36%						
σ_{eta}	std. dev. demand	0.55	$rac{1}{20}\sum_{ au=1}^{20}\sigma(\Delta y_{t+1}^{(au)})$	0.78%	1.29%						
α	level price elast.	0.4	$rac{1}{20}\sum_{ au=1}^{20} ho(\Delta y_{t+1}^{(1)},\Delta y_{t+1}^{(au)})$	0.57	0.68						
δ_{lpha}	sens. price elast. to $ au$	0.38	$\sum_{ au=1}^2 \Delta X_t^ au / \sum_ au \Delta X_t^ au$	0.20	0.20						
$\delta_{ heta}$	sens. demand to $ au$	0.42	$\sum_{ au>11} \Delta X_t^ au / \sum_ au \Delta X_t^ au$	0.09	0.09						
Impact effects of monetary shock											
Ŵ	arb. endowment	0.005	$dW_t/dy_t^{(1)}$	-8.8	-8.3						

Monetary shock (1/2)

P (08) decomposition

• Arbs' wealth rises and lowers term premia, unlike $\xi \to \infty$.

- Response of forward rates consistent with data, unlike $\xi \to \infty$.
- U-shape reflects EH vs. term premia as τ increases.

Implications beyond monetary policy

- Bond return predictability Details
 - Model quantitatively reproduces (FB (87), CS (91)) evidence.
 - Relies on sufficiently volatile demand shocks in calibration.

Implications beyond monetary policy

- - Model quantitatively reproduces (FB (87), CS (91)) evidence.
 - Relies on sufficiently volatile demand shocks in calibration.
- - Endog. arb wealth accounts for >1/2 of long-term price vol.
 - When $\xi \to \infty$ slope of yield curve falls by 3/4.

Implications beyond monetary policy

- Bond return predictability

 Details
 - Model quantitatively reproduces (FB (87), CS (91)) evidence.
 - Relies on sufficiently volatile demand shocks in calibration.
- - Endog. arb wealth accounts for >1/2 of long-term price vol.
 - When $\xi \to \infty$ slope of yield curve falls by 3/4.
- Secular decline in natural rate Details
 - Decline in \bar{r} increases arbs' wealth, lowers term premia by 12 bp.
 - Complements explanations focused on changing comovements.

Model	Analytical insights	Empirical evidence	Quantitative analysis	Conclusion
Summa	ry			

Propose a model of term structure consistent with effects of MP.

- As in preferred habitat tradition: habitat investors + arbs.
- As in intermediary AP tradition: arb wealth is state variable.
- Key mechanism: when arbs have positive duration, fall in short rate revalues wealth in arbs' favor and compresses term premia.
- \Rightarrow Quantitatively rationalizes MP effects on real term structure.
- ⇒ Implications beyond MP: return predictability, price volatility, and declining natural rate.

...

Outlook: Heterogeneity, risk premia, and macro

How do heterogeneous portfolios affect transmission of macro shocks and comovements with asset prices?

- Monetary Policy, Redistribution and Risk Premia (ECMA)
 - het. in households' marginal propensity to take risk (MPR)
 - expansionary monetary policy redistributes to high MPR
 - \Rightarrow lowers risk premia and amplifies transmission mechanism
- The Flight to Safety and International Risk Sharing (WP)
 - two country model w. time varying demand for safe dollar bonds
 - heterogeneous exposure to "global financial cycle"
- Monetary Policy, Segmentation and the Term Structure (WP)

Model	Analytical insights	Empirical evidence	Quantitative analysis	Conclusion

APPENDIX

Model

Slope of yield curve and return predictability

- Monetary easing implies steep yield curve and (if X/W is sufficiently high vs. α) low future excess returns.
- But Fama-Bliss (87) and Campbell-Shiller (91) find that steep yield curve predicts high excess returns.

Proposition

Consider estimating the FB (87) and CS (91) regressions

$$r_{t+1}^{(2)} - r_t = \alpha_{FB} + \beta_{FB} (f_t - r_t) + \epsilon_{FB,t+1},$$

$$r_{t+1} - y_t = \alpha_{CS} + \beta_{CS} (y_t - r_t) + \epsilon_{CS,t+1}$$

on model-generated data. As $\sigma_{\theta} \rightarrow \infty$, $\beta_{FB} \rightarrow 1$ and $\beta_{CS} \rightarrow -1$.

• Intuition: θ shocks only affect yields through term premia.

Relies on sufficiently volatile demand shocks in calibration

Model	Analytical insights	Empirical evidence	Quantitative analysis	Conclusion
Bond	price volatility	▶ Back		

Moment	Model	$\xi ightarrow \infty$
$y_t^{(1)}$	0.06%	0.00%
$y_t^{(20)} - y_t^{(1)}$	1.61%	0.40%
$\sigma(y_t^{(1)})$	1.51%	1.44%
$\sigma(\Delta y_{t+1}^{(1)})$	1.53%	1.45%
$rac{1}{20}\sum_{ au=1}^{20}\sigma(y_t^{(au)})$	1.36%	0.63%
$rac{1}{20}\sum_{ au=1}^{20}\sigma(\Delta y_{t+1}^{(au)})$	1.29%	0.61%
$\frac{1}{20}\sum_{\tau=1}^{20}\rho(\Delta y_{t+1}^{(1)},\Delta y_{t+1}^{(\tau)})$	0.68	0.92

• Unconditional yield curve moments in model vs. $\xi \rightarrow \infty$

• lower yield curve vol. and slope when arb wealth constant

- Decline in \overline{r} from Laubach and Williams (2003) / FRB NY
 - decline recapitalizes arbs' wealth, compresses term premia
 - lower term premia without changes in macro comovements.

Model	Analytical insights	Empirical evidence	Quantitative analysis	Conclusion
Data	▶ Back			

Series	Source
High-frequency FF surprise and S&P 500	Jarocinski-Karadi (20)
Nominal and real yields and forwards	Gurkaynak-Sack-Wright (06,08)
List of primary dealers	New York Fed
Dealer daily closing prices and market caps	CRSP
Dealer dealer intraday prices	TAQ
FOMC meetings with LSAP news	Cieslak-Schrimpf (19)
Alternative high-frequency IV	Nakamura-Steinsson (18)

ModelAnalytical insightsEmpirical evidenceQuantitative analysisConclusionResponse of yield curve (1/2)Back

Response of yield curve (2/2) \bigcirc Back

Specification	$\Delta f_t^{(5)}$	$\Delta f_t^{(10)}$	$\Delta f_t^{(15)}$	$\Delta f_t^{(20)}$
Baseline	0.40	0.11	0.25	0.39
	(0.10)	(0.14)	(0.15)	(0.14)
All FOMC announcements	0.38	0.11	0.13	0.27
	(0.10)	(0.11)	(0.15)	(0.13)
Excluding 7/08-6/09	0.46	-0.26	0.21	0.50
	(0.22)	(0.30)	(0.21)	(0.29)
Excluding announcements with LSAP news	0.28	-0.12	0.07	0.30
	(0.12)	(0.17)	(0.14)	(0.19)
Nakamura-Steinsson (18) IV	0.64	0.27	0.35	0.40
	(0.15)	(0.13)	(0.11)	(0.13)
Nakamura-Steinsson (18) IV, ex. 7/08-6/09	0.72	-0.07	0.13	0.29
	(0.32)	(0.26)	(0.19)	(0.26)

Mod	el Analytical insights	Empirical evidence	Quantitative analysis	Conclusion
0	utstanding TIPS	▶ Back		

- n			
- 11			

Empirical evidence

Quantitative analysis

Conclusion

List of dealers (1/2)

▶ Back

		CRSP/TAQ		FR Y9-C
Dealer	Ticker	Availability	RSSD	Availability
Bank of America	BAC	1/2/2004-12/30/2016	1073757	2004Q1-2016Q4
Barclays	BCS	1/2/2004-12/30/2016	2914521	2004Q4-2010Q3*
BMO	BMO	1/2/2004-12/30/2016	1245415	2004Q1-2016Q4
Bank of Novia Scotia	BNS	1/2/2004-12/30/2016	1238967	
Bear Stearns	BSC	1/2/2004-5/30/2008	1573257	
Citigroup	С	1/2/2004-12/30/2016	1951350	2004Q1-2016Q4
CIBC	СМ	7/10/2006-12/30/2016	2797498	2004Q1-2004Q3
Credit Suisse	CS	9/25/2006-12/30/2016	1574834	2016Q3-2016Q4
Deutsche Bank	DB	1/2/2004-12/30/2016	1032473	2004Q1-2016Q4*
Goldman Sachs	GS	1/2/2004-12/30/2016	2380443	2009Q1-2016Q4
HSBC	HSBC	11/15/2013-12/30/2016	3232316	2004Q1-2016Q4
Jefferies	JEF	1/2/2004-2/28/2013	2046020	
JP Morgan	JPM	1/2/2004-12/30/2016	1039502	2004Q1-2016Q4
Lehman Brothers	LEH	1/2/2004-9/17/2008	2380144	

- n			
- 11			

Empirical evidence

Quantitative analysis

Conclusion

List of dealers (2/2)

▶ Back

	CRSP/TAQ		FR Y9-C		
Dealer	Ticker	Availability	RSSD	Availability	
Merrill Lynch	MER	1/2/2004-12/31/2008			
MF Global	MF	7/19/2007-10/28/2011	4236731	2016Q3-2016Q4	
Mizuho	MFG	11/8/2006-12/30/2016	5034792	2016Q3-2016Q4	
Morgan Stanley	MS	1/17/2006-12/30/2016	2162966	2009Q1-2016Q4	
Nomura	NMR	1/2/2004-12/30/2016	1445345		
Banc One	ONE	1/2/2004-6/30/2004	1068294	2004Q1-2004Q2	
Prudential	PRU	1/2/2004-12/30/2016	2441728		
RBS	RBS	10/18/2007-12/30/2016	1851106		
RBC	RY	1/2/2004-12/30/2016	3226762	2010Q4-2016Q4*	
TD	TD	1/2/2004-12/30/2016	3606542	2015Q3-2016Q4	
UBS	UBS	1/2/2004-12/30/2016	4846998	2016Q3-2016Q4	
Wells Fargo	WFC	1/2/2004-12/30/2016	1120754	2004Q1-2016Q4	
Zions First National	ZION	1/2/2004-12/30/2016	1027004	2004Q1-2016Q4	

Analytical insights

Empirical evidence

Quantitative analysis

Conclusion

Response of nominal yields (1/3) \bigcirc Back

Analytical insights

Empirical evidence

Quantitative analysis

Conclusion

Response of nominal yields (2/3) \bigcirc Back

Response of nominal yields (3/3) **Back**

Specification	$\Delta f_t^{(5)}$	$\Delta f_t^{(10)}$	$\Delta f_t^{(15)}$	$\Delta f_t^{(20)}$
Baseline	0.51	-0.09	-0.31	-0.64
	(0.47)	(0.41)	(0.31)	(0.34)
All FOMC announcements	0.42	-0.09	-0.23	-0.42
	(0.26)	(0.23)	(0.17)	(0.19)
Excluding 7/08-6/09	0.10	-0.49	-0.59	-0.84
	(0.34)	(0.33)	(0.43)	(0.51)
Excluding announcements with LSAP news	-0.02	-0.52	-0.51	-0.74
	(0.30)	(0.27)	(0.35)	(0.40)
Nakamura-Steinsson (18) IV	0.91	0.27	-0.12	-0.48
	(0.46)	(0.40)	(0.28)	(0.33)
Nakamura-Steinsson (18) IV, ex. 7/08-6/09	0.27	-0.29	-0.37	-0.66
	(0.29)	(0.29)	(0.32)	(0.41)

Model	Analytical insights	Empirical evidence	Quantitative analysis	Conclusion
Response	e of arb wealth	▶ Back		

Specification	30 minute change	One day change
Baseline	-8.8	-8.1
	(2.7)	(9.4)
All FOMC announcements	-3.0	-2.8
	(4.2)	(7.8)
Excluding 7/08-6/09	-15.5	-3.9
	(8.7)	(19.5)
Excluding announcements with LSAP news	-10.5	3.0
	(4.7)	(9.9)
Nakamura-Steinsson (18) IV	-12.2	-21.0
	(4.0)	(6.4)
Nakamura-Steinsson (18) IV, ex. 7/08-6/09	-24.1	-21.5
	(9.9)	(17.3)

State-dependent effects of MP

Specification	$\Delta f_t^{(15)}$	$\Delta f_t^{(20)}$	30 minute change in dealer price
Baseline	-2.3	-2.9	13.8
	(1.2)	(1.4)	(7.5)
All FOMC announcements	-0.3	-2.2	2.5
	(1.6)	(1.9)	(8.7)
Excluding 7/08-6/09	-3.9	-5.9	53.9
	(2.7)	(5.2)	(24.4)
Excluding announcements with LSAP news	-1.4	-2.5	23.6
	(1.3)	(1.9)	(10.9)
Nakamura-Steinsson (18) IV	-6.3	-10.1	10.1
	(3.2)	(5.0)	(10.1)
Nakamura-Steinsson (18) IV, ex. $7/08-6/09$	-6.2	-9.0	26.3
	(3.3)	(5.8)	(21.5)

Coefficients on $\Delta y_t^{(1)} imes$ incgap $_t$ and $\Delta y_t^{(1)} imes$ incgap $_{dt}$

Model Analytical insights Empirical evidence Quantitative analysis Conclusion

State-dependent effects of MP

	R		ck	
		а		

	$\Delta f_t^{(15)}$	$\Delta f_t^{(20)}$	30 minute change in dealer price
Data	[-4.3,-0.4]	[-5.3,-0.5]	[1.5,25.1]
Model	-0.3	-0.4	24.9

Coefficients on $\Delta y_t^{(1)} \times incgap_t$ given MP shock

• As derived in Cochrane-Piazzesi (08),

$$\begin{aligned} & f_t^{(\tau-1,\tau)} - y_{t+\tau-1}^{(1)} = \\ & \left[r_{t+1}^{(\tau)} - r_{t+1}^{(\tau-1)} \right] + \left[r_{t+2}^{(\tau-1)} - r_{t+2}^{(\tau-2)} \right] + \ldots + \left[r_{t+\tau-1}^{(2)} - y_{t+\tau-2}^{(1)} \right], \end{aligned}$$

where

$$r_{t+1}^{(\tau)} \equiv \log P_{t+1}^{(\tau-1)} - \log P_t^{(\tau)}.$$

• Ex-ante, this implies

$$f_t^{(\tau-1,\tau)} - E_t y_{t+\tau-1}^{(1)} = E_t \left[r_{t+1}^{(\tau)} - r_{t+1}^{(\tau-1)} \right] + E_t \left[r_{t+2}^{(\tau-1)} - r_{t+2}^{(\tau-2)} \right] + \ldots + E_t \left[r_{t+\tau-1}^{(2)} - y_{t+\tau-2}^{(1)} \right].$$

Forward curve and excess returns • Back

Quantitative analysis

▶ Back

Decomposing forward rate response

-200

0

-60

-70

0

-70

0

Model	Analytical insights	Empirical evidence	Quantitative analysis	Conclusion
PDE	▶ Back			

$$\begin{split} & \left[P_{r,t}^{(\tau)} \kappa_r \left(\bar{r} - r_t \right) + P_{W,t}^{(\tau)} \omega_t + P_{\beta,t}^{(\tau)} \kappa_\beta \left(\bar{\beta} - \beta_t \right) - P_{\tau,t}^{(\tau)} + \frac{1}{2} P_{rr,t}^{(\tau)} \sigma_r^2 \\ & + \frac{1}{2} P_{WW,t}^{(\tau)} \left(\eta_{r,t}^2 + \eta_{\beta,t}^2 \right) + \frac{1}{2} P_{\beta\beta,t}^{(\tau)} \sigma_\beta^2 + P_{rW,t}^{(\tau)} \sigma_r \eta_{r,t} + P_{\betaW,t}^{(\tau)} \sigma_\beta \eta_{\beta,t} - r_t P_t^{(\tau)} \right] dt \\ & = \frac{1}{W_t} \left[\left(P_{r,t}^{(\tau)} \sigma_r + P_{W,t}^{(\tau)} \eta_{r,t} \right) \int_0^\infty \left(\alpha(s) \log \left(P_t^{(s)} \right) + \theta_0(s) \right) \frac{1}{P_t^{(s)}} \left(P_{r,t}^{(s)} \sigma_r + P_{W,t}^{(s)} \eta_{\beta,t} \right) ds \\ & + \left(P_{\beta,t}^{(\tau)} \sigma_\beta + P_{W,t}^{(\tau)} \eta_{\beta,t} \right) \int_0^\infty \left(\alpha(s) \log \left(P_t^{(s)} \right) + \theta_0(s) \right) \frac{1}{P_t^{(s)}} \left(P_{\beta,t}^{(s)} \sigma_\beta + P_{W,t}^{(s)} \eta_{\beta,t} \right) ds \\ & + \beta_t \left[\left(P_{r,t}^{(\tau)} \sigma_r + P_{W,t}^{(\tau)} \eta_{r,t} \right) \int_0^\infty \theta_1(s) \frac{1}{P_t^{(s)}} \left(P_{r,t}^{(s)} \sigma_r + P_{W,t}^{(s)} \eta_{r,t} \right) ds \\ & + \left(P_{\beta,t}^{(\tau)} \sigma_\beta + P_{W,t}^{(\tau)} \eta_{\beta,t} \right) \int_0^\infty \theta_1(s) \frac{1}{P_t^{(s)}} \left(P_{\beta,t}^{(s)} \sigma_\beta + P_{W,t}^{(s)} \eta_{\beta,t} \right) ds \right] \right] dt. \end{split}$$

$$dW_t = \omega(r_t, \beta_t, W_t)dt + \eta_r(r_t, \beta_t, W_t)dB_{r,t} + \eta_\beta(r_t, \beta_t, W_t)dB_{\beta,t}$$

where

$$\begin{split} \omega_t &= \xi \left(\bar{W} - W_t \right) + W_t r_t + \int_0^\infty \left(\alpha(\tau) \log \left(P_t^{(\tau)} \right) + \theta_0(\tau) + \theta_1(\tau) \beta_t \right) \left(\mu_t^{(\tau)} - r_t \right) d\tau \\ \eta_{r,t} &= \int_0^\infty \left(\alpha(\tau) \log \left(P_t^{(\tau)} \right) + \theta_0(\tau) + \theta_1(\tau) \beta_t \right) \frac{1}{P_t^{(\tau)}} \left(P_{r,t}^{(\tau)} \sigma_r + P_{W,t}^{(\tau)} \eta_{r,t} \right) d\tau \\ \eta_{\beta,t} &= \int_0^\infty \left(\alpha(\tau) \log \left(P_t^{(\tau)} \right) + \theta_0(\tau) + \theta_1(\tau) \beta_t \right) \frac{1}{P_t^{(\tau)}} \left(P_{\beta,t}^{(\tau)} \sigma_\beta + P_{W,t}^{(\tau)} \eta_{\beta,t} \right) d\tau. \end{split}$$

Model Analytical insights Empirical evidence Quantitative analysis Conclusion PDE when $\xi \to \infty$ Back

$$\begin{split} & \left[P_{r,t}^{(\tau)} \kappa_r \left(\bar{r} - r_t \right) + P_{\beta,t}^{(\tau)} \kappa_\beta \left(\bar{\beta} - \beta_t \right) - P_{\tau,t}^{(\tau)} + \frac{1}{2} P_{rr,t}^{(\tau)} \sigma_r^2 + \frac{1}{2} P_{\beta\beta,t}^{(\tau)} \sigma_\beta^2 - r_t P_t^{(\tau)} \right] dt \\ &= P_{r,t}^{(\tau)} \frac{1}{W_t} \sigma_r \int_0^\infty \left(\alpha(s) \log \left(P_t^{(s)} \right) + \theta_0(s) + \beta_t \theta_1(s) \right) \frac{1}{P_t^{(s)}} P_{r,t}^{(s)} \sigma_r ds \\ &+ P_{\beta,t}^{(\tau)} \frac{1}{W_t} \sigma_\beta \int_0^\infty \left(\alpha(s) \log \left(P_t^{(s)} \right) + \theta_0(s) + \beta_t \theta_1(s) \right) \frac{1}{P_t^{(s)}} P_{\beta,t}^{(s)} \sigma_\beta ds \end{split}$$

with

$$dr_t = \kappa_r(\bar{r} - r_t)dt + \sigma_r dB_{r,t},$$

$$d\beta_t = -\kappa_\beta \beta_t dt + \sigma_\beta dB_{\beta,t}.$$