Princeton Initiative: Macro, Money, and Finance 2022 Comparing Monetary Models

Sebastian Merkel

September 9, 2022

1

- What determines the price level and/or inflation?
- How does interest rate policy affect the economy?
- When and how are fiscal policy and government debt relevant for inflation?
- What is the role of equilibrium multiplicity and expectations coordination?
- What is the role of portfolio choice between nominal government liabilities and other assets?

This lecture: analyze these questions through the lens of three monetary models

Lecture partially (but very loosely) based on Li, Merkel (2022), "Flight to Safety in a New Keynesian Model"

Baseline Real Model

2 Money as a Pure Unit of Account

- Flexible Goods Prices
- Sticky Goods Prices
- Interest Rate Policy

In the second second

- Portfolio Choice with Nominal Bonds and the Price Level
- Equilibrium Dynamics under Active Fiscal Policy
- Eliminating Fiscal Effects: Passive Fiscal Policy

Outline

Baseline Real Model

2 Money as a Pure Unit of Account

- Flexible Goods Prices
- Sticky Goods Prices
- Interest Rate Policy

3 Government Debt and Fiscal Theory of the Price Level

- Portfolio Choice with Nominal Bonds and the Price Level
- Equilibrium Dynamics under Active Fiscal Policy
- Eliminating Fiscal Effects: Passive Fiscal Policy

Baseline Model: AK Economy

• Household preferences ($i \in [0, 1]$)

$$\mathbb{E}\left[\int_0^\infty e^{-\rho t} \log c_t^i dt\right]$$

- Each agent i manages capital k_t^i
 - production flow $y_t^i dt = a_t k_t^i dt$
 - no investment, no depreciation
 - traded on capital markets at (real) price q_t^K
- Aggregates and market clearing
 - normalize $K_t := \int k_t^i di = 1$
 - goods market clearing $C_t := \int c_t^i di = \int y_t^i di =: Y_t$

This model is trival to solve:

• Market clearing

$$C_t = a_t$$

• Log utility consumption rule $c_t^i = \rho q_t^K k_t^i$ tells us capital price

$$q_t^K = \frac{a_t}{\rho}$$

• Can recover interest rate from household Euler equation (and $c_t^i \propto C_t$):

$$\mathbb{E}_t[dC_t] = (r_t - \rho) C_t dt \qquad \Rightarrow \qquad r_t = \rho + \mu_t^a =: r_t^*$$

Accommodating Price Setting Frictions

- Later, want to study a version with nominal goods prices, possibly sticky
- Need two features to accommodate price setting frictions
 - elastic short-term supply (within *dt*-period)
 - at "wrong" prices, goods demand may be excessive or insufficient
 - markets can only clear if supply can adjust within the period
 - $\rightarrow~$ introduce variable capital utilization
 - 2 individual price-setting firms cannot face perfectly elastic demand
 - Walrasian market: each agent faces a flat demand curve (price taker)
 - no meaningful price setting problem: $p + \varepsilon$: no demand, $p \varepsilon$: infinite demand
 - $\rightarrow\,$ introduce differentiated goods and monopolistic competition (but eliminate other distortions this creates with subsidy & profit redistribution)

Extended Model: Setup

• Household preferences ($i \in [0, 1]$)

$$\mathbb{E}\left[\int_0^\infty e^{-\rho t} \left(\log c_t^i - \frac{\left(u_t^i\right)^{1+\nu}}{1+\nu}\right) dt\right]$$

• CES demand for goods

$$Y_t = \left(\int \left(y_t(j)\right)^{\frac{\epsilon-1}{\epsilon}} dj\right)^{\frac{\epsilon}{\epsilon-1}} \Rightarrow \text{demand for variety } j: \quad y_t(j) = \left(p_t(j)\right)^{-\epsilon} Y_t$$

- Household *i* rents out effective capital \$\hat{k}_t^i = u_t^i k_t^i\$ to firms at unit rental price \$\rho_t^R\$
 Firm *j*:
 - production function $y_t(j) = a_t \hat{k}_t(j)$
 - time-t profits

$$\Pi_t(j) = (1+\tau)p_t(j)y_t(j) - p_t^R \hat{k}_t(j)$$

• profits net of subsidy payments redistributed to households in proportion to k_t^i holdings

Extended Model: Solution

- Firm price setting problem:
 - constant markup over unit marginal cost

$$p_t(j) = rac{1}{1+ au}rac{\epsilon}{\epsilon-1}rac{p_t^R}{a_t}$$

- in equilibrium: $p_t(j) = 1$ for all j, so this determines p_t^R
- if $\tau = \frac{1}{\epsilon 1}$, $p_t^R = a_t$ (assume this from now on)
- Household utilization decision:
 - first-order condition: $p_t^R k_t^i / c_t^i = \left(u_t^i\right)^{
 u}$
 - in equilibrium: $p_t^R = u_t^{1+\nu} a_t \Rightarrow u_t = 1 =: u^*$
- Conclusion: identical equilibrium as in baseline model

- Can relabel things:
 - utilization $u_t
 ightarrow$ labor ℓ_t
 - ullet rental price $p_t^R
 ightarrow$ wage w_t
 - get rid of capital (or call it labor productivity)
- Then this is the real counterpart of a standard New Keynesian textbook model (e.g. Gali 2015)
- Why the (unconventional) capital formulation?
 - closer to other models you see this weekend
 - matters for safe asset model later (can trade capital, but not labor)

Baseline Real Model

2 Money as a Pure Unit of Account

- Flexible Goods Prices
- Sticky Goods Prices
- Interest Rate Policy

3 Government Debt and Fiscal Theory of the Price Level

- Portfolio Choice with Nominal Bonds and the Price Level
- Equilibrium Dynamics under Active Fiscal Policy
- Eliminating Fiscal Effects: Passive Fiscal Policy

Baseline Real Model

Money as a Pure Unit of Account Flexible Goods Prices

- Sticky Goods Prices
- Interest Rate Policy

3 Government Debt and Fiscal Theory of the Price Level

- Portfolio Choice with Nominal Bonds and the Price Level
- Equilibrium Dynamics under Active Fiscal Policy
- Eliminating Fiscal Effects: Passive Fiscal Policy

A "Monetary" Version of the Same Model

Let's introduce dollars as a pure unit of account

- $\mathcal{P}_t > 0$ dollar price of aggregate good at time t
- limit attention to deterministic time paths

$$d\mathcal{P}_t = \pi_t \mathcal{P}_t dt$$

We connect dollars to our real economies in two ways

- **(**) goods firms have to quote their prices in dollars $(\mathcal{P}_t(j))$
 - by itself inconsequential: can still implement any real $p_t(j)$ by setting $\mathcal{P}_t(j) = p_t(j)\mathcal{P}_t$
 - $\bullet\,$ does not impose any restrictions on equilibrium \mathcal{P}_t paths without price setting frictions
- add nominal bond in zero net supply
 - bond return

$$dr_t^{\mathcal{B}} = i_t dt + rac{d(1/\mathcal{P}_t)}{1/\mathcal{P}_t} = (i_t - \pi_t) dt$$

- i_t set externally by policy (e.g. central bank)
- in a very broad sense, generates a store of value role for dollars

Solving the "Monetary Model" (not in the most efficient way)

- Deriving the "IS equation"
 - start with the Euler equation (and $c_t^i = C_t$ to simplify notation)

$$\mathbb{E}_t[dC_t] = (r_t - \rho) C_t dt$$

• $C_t = u_t a_t$ by goods market clearing, thus

$$\frac{\mathbb{E}_t[dC_t]}{C_t dt} = \frac{\mathbb{E}_t[du_t]}{u_t dt} + \frac{da_t}{a_t dt} = \frac{\mathbb{E}_t[du_t]}{u_t dt} + \mu_t^a$$

• portfolio choice between real and nominal bonds yields the Fisher equation

$$r_t = i_t - \pi_t$$

• combining the three (recall $r^*_t =
ho + \mu^a_t$)

$$\mathbb{E}_t[du_t] = (i_t - \pi_t - r_t^*) u_t dt$$

Solving the "Monetary Model" - continued (not in the most efficient way)

• Three equations for key variables \mathcal{P}_t , u_t , π_t

 $\mathbb{E}_t[d\mathcal{P}_t] = \pi_t \mathcal{P}_t dt$ $\mathbb{E}_t[du_t] = (i_t - \pi_t - r_t^*) u_t dt$ $u_t = u^* = 1$

price level evolution IS equation optimal price setting & utilization

- third equation fully determines u_t , implies $du_t = 0$
- second equation determines π_t

$$\pi_t = i_t - r_t^*$$

- \mathcal{P}_0 not pinned down by these equations (or any other equilibrium condition)
- Easy to recover rest of the model solution

$$p_t^R = a_t, \qquad C_t = a_t, \qquad q_t^K = \frac{a_t}{\rho}, \qquad r_t = r_t^*$$

- Real side: same as real model
- Nominal side:
 - inflation effectively determined by Fisher equation
 - $\bullet \ \mathcal{P}_0 \ undetermined$
- \rightarrow For any given interest rate path $\{i_t\}_{t\geq 0}$ there is a continuum of equilibria indexed by $\mathcal{P}_0 \in (0,\infty)$

What is the Mechanism behind Fisher Equation Inflation Determination?

- Two interpretations how increase in *i_t* raises inflation: (also mixture between the two possible)
 - **(1)** Current price \mathcal{P}_0 drops
 - $\bullet\,$ agents coordinate expectations (somehow) on some future price level $\mathcal{P}_{\mathcal{T}}$
 - higher i_t depresses demand today ightarrow firms lower prices $ightarrow \mathcal{P}_0$ falls
 - **2** Future prices \mathcal{P}_t rise
 - ullet todays price remains fixed, higher interest rates moves up expectations of future \mathcal{P}_t
 - (somehow) behavior in future periods validates these beliefs
- This model does not really provide an answer
 - derivation based on IS equation (backward equation) suggestive of first interpretation
 - but there is no economic argument (within this model) why higher interest rates could not coordinate expectations on higher future prices

Baseline Real Model

Money as a Pure Unit of Account Flexible Goods Prices

- Sticky Goods Prices
- Interest Rate Policy

3 Government Debt and Fiscal Theory of the Price Level

- Portfolio Choice with Nominal Bonds and the Price Level
- Equilibrium Dynamics under Active Fiscal Policy
- Eliminating Fiscal Effects: Passive Fiscal Policy

Adding Sticky Prices

• Sticky prices (quadratic adj. costs) replaces $u_t = 1$ with New Keynesian Phillips curve

$$\frac{\mathbb{E}_{t}\left[d\pi_{t}\right]}{dt} = \rho\pi_{t} - \kappa\left(\frac{p_{t}^{R}}{a_{t}} - 1\right) = \rho\pi_{t} - \kappa\left(u_{t}^{1+\nu} - 1\right)$$

- Adds a second forward-looking equation to the system
- Simpler to analyze, but similar conclusions: static Phillips curve

$$\pi_t = \kappa \left(u_t^{1+\nu} - 1 \right)$$

 \rightarrow will work with this version here

• Aside: can "microfound" this in one of two (crude) ways

() let firms' time horizon and price stickiness go to zero in the right proportion

2 assume that adjustment costs are relative to (lagged) aggreate price

Equilibrium in the Sticky Price Model

• Three equations for key variables \mathcal{P}_t , u_t , π_t

$$d\mathcal{P}_t = \pi_t \mathcal{P}_t dt \qquad \text{price level (state) evolution} \\ \mathbb{E}_t[du_t] = (i_t - \pi_t - r_t^*) u_t dt \qquad \text{IS equation} \\ \pi_t = \kappa \left(u_t^{1+\nu} - 1\right) \qquad \text{Phillips curve}$$

• Remaining quantities can be backed out from static relationships

$$C_t = u_t a_t, \qquad p_t^R = u_t^{1+\nu} a_t, \qquad r_t = i_t - \pi_t, \qquad q_t^K = u_t a_t / \rho$$

- Differences from flexible price equilibrium:
 - ${\mathcal P}$ is now a state variable with given initial state ${\mathcal P}_0$
 - but IS equation plus Phillips curve leaves room for multiple equilibrium inflation rate paths (there is no terminal/transversality condition)

Equilibrium Multiplicity

- Let the (bounded) path of nominal rates $\{i_t\}_{t\geq 0}$ be given
- Substituting Phillips curve into IS equation yields

$$\mathbb{E}_t[du_t] = \left(i_t - \kappa \left(u_t^{1+\nu} - 1\right) - r_t^*\right) u_t dt$$

- Missing terminal condition leads to continuum of (bounded) solution paths:
 - fix expectation of u_T (or π_T) at some (arbitrary) time T
 - can solve backward: there is a unique solution path consistent with that expectation
 - but this works for any $u_{\mathcal{T}} \in (0,\infty)$ (or any $\pi_{\mathcal{T}} \in (-\infty,\infty)$)
 - note: there is also a unique forward solution after time T and because of the negative feedback, none of these explodes at $t \to \infty$
- → Conclusion: one-dimensional continuum of equilibria can be indexed by expected inflation $\pi_T \in (-\infty, \infty)$ at some future date T

Baseline Real Model

2 Money as a Pure Unit of Account

- Flexible Goods Prices
- Sticky Goods Prices
- Interest Rate Policy

3 Government Debt and Fiscal Theory of the Price Level

- Portfolio Choice with Nominal Bonds and the Price Level
- Equilibrium Dynamics under Active Fiscal Policy
- Eliminating Fiscal Effects: Passive Fiscal Policy

• Recall combined IS-Phillips equation

$$\mathbb{E}_t[du_t] = \left(i_t - \kappa \left(u_t^{1+\nu} - 1\right) - r_t^*\right) u_t dt$$

• Suppose we fix ("anchor") expectations of future π_T (and thus u_T)

- higher interest rates i_t over $i \in [0, T]$ raise expected growth rate of u_t
- as u_T is fixed, this means a lower u_t path
- ightarrow for fixed $\pi_{\mathcal{T}}$ expectation, higher interest rates cause output and inflation to fall
- But issue: could also use a different equilibrium selection
 - e.g. higher interest rates cause π_T to drift upwards
 - \rightarrow neo-Fisherian conclusion that higher interest rates raise inflation

Effects of Interest Rate Hike

Taylor Rules

• Suppose next that policy follows a feedback rule

$$i_t = i_t^0 + \phi \pi_t, \qquad \phi \ge 0$$

• Plugging into combined IS-Phillips equation

$$\mathbb{E}_t[extsf{d} u_t] = \left(extsf{i}_t^0 - (\phi-1)\kappa \left(u_t^{1+
u} - 1
ight) - extsf{r}_t^st
ight) u_t dt$$

- How does this affect the solution structure?
- $\phi < 1~$ no change, continuum of bounded solutions
- $\phi>1\,$ all but one solutions are unbounded, unique bounded solution is "locally unique"
- If we limit attention to locally unique solutions, Taylor principle ($\phi>1$) can select a unique equilibrium
- This even works if Taylor principle is only followed eventually (after some time T)

- We have seen that given an equilibrium path $\{i_t\}_{t\geq 0}$ there is a continuum of equilibria
- Can any of these equilibria be selected by a suitable Taylor rule?

$$ightarrow$$
 Yes, pick any $\phi > 1$, $i_t^0 = i_t - \phi \pi_t$

• Thus, the criterion "can be selected by some Taylor rule" does *not* refine the set of possible equilibria

Summary: Inflation and Monetary Policy in this Model

- Inflation is guided by a purely forward-looking equation
- Monetary policy (i_t policy) is about managing expectations to implement a desired equilibrium
- There are two (logical) dimensions to this:
 - **(**) anchor inflation expectation π_T at some future date T (e.g. by Taylor rule)
 - 2 choose (expected) interest rate sequence over [0, T] to move private sector demand in way consistent with desired π_0 (and u_0)
- If future expectations are anchored, raising interest rates has the conventional effects
 - lower inflation
 - reduced economic activity (lower u_t)
- Optimal policy analysis: interest rate policy can implement the first best
 - set the interest rate on the equilibrium path to the natural rate, $i_t = r_t^*$
 - use equilibrium selection to select the zero inflation equation
 - ightarrow leads to $r_t=r^*$, $\pi_t=$ 0, $u_t=u^*$ (divine coincidence)

Baseline Real Model

2 Money as a Pure Unit of Account

- Flexible Goods Prices
- Sticky Goods Prices
- Interest Rate Policy

In the second second

- Portfolio Choice with Nominal Bonds and the Price Level
- Equilibrium Dynamics under Active Fiscal Policy
- Eliminating Fiscal Effects: Passive Fiscal Policy

Baseline Real Model

2 Money as a Pure Unit of Account

- Flexible Goods Prices
- Sticky Goods Prices
- Interest Rate Policy

In the second second

- Portfolio Choice with Nominal Bonds and the Price Level
- Equilibrium Dynamics under Active Fiscal Policy
- Eliminating Fiscal Effects: Passive Fiscal Policy

Modified Model Setup with Nominal Government Debt

- Government issues nominal bonds
 - nominal face value \mathcal{B}_t , evolution $d\mathcal{B}_t = \mu_t^{\mathcal{B}} \mathcal{B}_t dt$
 - pays (floating) interest i_t
 - real value $q_t^B := \mathcal{B}_t / \mathcal{P}_t$

• Interest paid with new bonds or taxes τ_t on capital (equivalent to lump-sum tax)

$$i_t \mathcal{B}_t = \mu_t^{\mathcal{B}} \mathcal{B}_t + \mathcal{P}_t \tau_t \mathcal{K}_t = \mu_t^{\mathcal{B}} \mathcal{B}_t + \mathcal{P}_t \tau_t \qquad \Rightarrow \qquad i_t = \mu_t^{\mathcal{B}} + rac{ au_t}{q_t^{\mathcal{B}}}$$

• Household net worth evolves according to

$$dn_t^i = -c_t^i dt + heta_t^i dr_t^{\mathcal{B}} + (1- heta_t^i) dr_t^{\mathcal{K}}$$

with returns

$$dr_t^{\mathcal{B}} = (i_t - \pi_t) dt = \left(\frac{\tau_t}{q_t^{\mathcal{B}}} + \mu_t^{q,\mathcal{B}}\right) dt$$
$$dr_t^{\mathcal{K}} = \left(\frac{p_t^{\mathcal{R}} a_t u_t^i + (1 - p_t^{\mathcal{R}}) a u_t - \tau_t}{q_t^{\mathcal{K}}} + \mu_t^{q,\mathcal{K}}\right) dt$$

Portfolio Choice between Bonds and Capital

• Imposing no arbitrage (portfolio choice) and $u_t = u_t^i$ yields

$$\begin{aligned} \frac{\tau_t}{q_t^B} + \mu_t^{q,B} &= \frac{a_t u_t - \tau_t}{q_t^K} + \mu_t^{q,K} \\ \Rightarrow \mu_t^{q,B} - \mu_t^{q,K} &= \frac{a_t u_t}{q_t^K} - \left(\frac{\tau_t}{q_t^B} + \frac{\tau_t}{q_t^K}\right) \end{aligned}$$

• In terms of
$$\vartheta_t := q_t^B / (q_t^B + q_t^K)$$
, $\hat{\tau}_t := \tau_t / Y_t = \tau_t / (u_t a_t)$
 $\mu_t^\vartheta = \rho \left(1 - \vartheta_t^{-1} \hat{\tau}_t \right)$

• Integrating forward in time yields for ϑ_{t_0} (= $\theta_{t_0}^i$ in equilibrium)

$$\vartheta_{t_0} = \mathbb{E}_{t_0} \left[\int_{t_0}^{\infty} \rho e^{-\rho(t-t_0)} \hat{\tau}_t dt \right]$$

• In words: equilibrium portfolio weight on bonds is a (expected) weighted average of future surplus-output ratios

Portfolio Choice and Debt Valuation

• The portfolio choice condition

$$\vartheta_{t_0} = \mathbb{E}_{t_0} \left[\int_{t_0}^{\infty} \rho e^{-\rho(t-t_0)} \hat{\tau}_t dt \right]$$

is equivalent to a debt valuation equation

$$\frac{\mathcal{B}_{t_0}}{\mathcal{P}_{t_0}} = q_{t_0}^B = \mathbb{E}_{t_0} \left[\int_{t_0}^{\infty} \exp\left(- \int_{t_0}^t r_s ds \right) \tau_t dt \right]$$

- To derive latter: multiply by $q^B_{t_0} + q^K_{t_0}$ plus some algebra
- Interpretation: households willing to absorb any amount of bonds as long as they expect sufficient future primary surpluses to back them
- Note: first equation does not depend (explicitly) on interest rates or inflation, only on future surplus-output ratios $\hat{\tau}_t$

Price Level Determination under Flexible Prices

- Consider flexible price model ($\kappa
 ightarrow \infty$ & \mathcal{P}_0 free)
- Have just seen: fiscal policy affects portfolio choice ϑ_t and thus relative asset valuations (q_t^K/q_t^B)
- What determines level of asset prices q_t^K , q_t^B ?
 - \rightarrow consumption-savings choice and wealth effects (& goods market clearing)
 - goods market clearing (recall $u_t = u^* = 1$):

$$a_t = C_t =
ho(q_t^B + q_t^K) =
ho rac{q_t^B}{artheta_t}$$

• solving for q_t^B

$$\frac{\mathcal{B}_t}{\mathcal{P}_t} = \boldsymbol{q}_t^{\mathcal{B}} = \vartheta_t \frac{\boldsymbol{a}_t}{\rho}$$

• This is a condition for the equilibrium price level \mathcal{P}_t (because \mathcal{B}_0 is a pre-determined state variable)

Interpretation: Portfolio Choice can Determine the Price Level

- Previous result suggests: portfolio choice can determine the price level when there are nominal assets
- Economic logic, for given ϑ_t
 - \mathcal{P}_t too high ightarrow total wealth q_t^B/ϑ_t too low ightarrow insufficient demand ightarrow firms lower prices
 - \mathcal{P}_t too low \rightarrow total wealth q_t^B/ϑ_t too high \rightarrow excess demand \rightarrow firms raise prices
- Key to this logic: some asset value is fixed in nominal terms (here bonds)
- Also: logic may break down if ϑ_t reacts to \mathcal{P}_t (because future $\hat{\tau}_t s$ do) (will come back to this later)

Fiscal Theory of the Price Level (FTPL)

• More conventional way of saying essentially the same: start from asset valuation equations

$$q_{t_0}^B = \mathbb{E}_{t_0} \left[\int_{t_0}^{\infty} \exp\left(-\int_{t_0}^t r_s ds\right) \tau_t dt \right]$$
$$q_{t_0}^K = \mathbb{E}_{t_0} \left[\int_{t_0}^{\infty} \exp\left(-\int_{t_0}^t r_s ds\right) (a_t - \tau_t) dt \right]$$

• Consumption demand is

$$C_{t_0} = \rho\left(q_{t_0}^B + q_{t_0}^K\right) = \underbrace{\rho\int_{t_0}^{\infty} \exp\left(-\int_{t_0}^t r_s ds\right) a_t dt}_{=a_{t_0}} + \rho\left(q_{t_0}^B - \int_{t_0}^{\infty} \exp\left(-\int_{t_0}^t r_s ds\right) \tau_t dt\right)$$

- Unless second term vanishes, government bonds net of tax liabilities represent (pos. or neg.) net wealth and affect demand
 - wealth effects on nominal government bonds can bring the goods price to equilibrium
 - this idea is called the Fiscal Theory of the Price Level (FTPL)

Inflation Determination under Sticky Prices

- Next consider sticky price model
- Same derivation as before applies (with u_t possibly different from 1)

$$\frac{\mathcal{B}_t}{\mathcal{P}_t} = \vartheta_t \frac{u_t a_t}{\rho}$$

- But now P_t (and q^B_t) is a state variable → this can no longer determine the price level (it is already determined)
- Instead determines utilization u_t and inflation π_t
 - \mathcal{P}_t too large ightarrow insufficient demand generates under-utilization and deflation
 - \mathcal{P}_t too small ightarrow excess demand generates over-utilization and inflation
- What we really get is a "fiscal theory of inflation"

Baseline Real Model

2 Money as a Pure Unit of Account

- Flexible Goods Prices
- Sticky Goods Prices
- Interest Rate Policy

In the second second

- Portfolio Choice with Nominal Bonds and the Price Level
- Equilibrium Dynamics under Active Fiscal Policy
- Eliminating Fiscal Effects: Passive Fiscal Policy

Active Fiscal Policy

- Loosely speaking, fiscal policy is called "active", if surpluses do not react to stabilize debt (active/passive terminology is due to Leeper 1991)
- Under active fiscal policy, FTPL can determine a unique equilibrium
 - surpluses are (sufficiently) unresponsive to variations in ϑ_t (or q_t^B)
 - only one ϑ_t solution is consistent with portfolio choice and asset market clearing
 - $\bullet\,$ equivalent: only one \mathcal{P}_t is consistent with debt valuation equation
- Specific example: suppose path for surplus-GDP ratio $\{\hat{\tau}_t\}_{t\geq 0}$ is exogenous

 \rightarrow portfolio choice: $\{\vartheta_t\}_{t\geq 0}$ is determined independently of $\{i_t\}_{t\geq 0}$, $\{\pi_t\}_{t\geq 0}$, and $\{u_t\}_{t\geq 0}$

$$\vartheta_t = \mathbb{E}_t \left[\int_t^\infty \rho e^{-\rho(s-t)} \hat{\tau}_s ds \right]$$

Remark: this is just a benchmark; $\hat{\tau}_t$ reacting to i_t , π_t , or u_t could still be active

Given ϑ_t , remaining model has closed-form solution

$$\begin{aligned} dq_t^B &= \left(\left(i_t - \pi(q_t^B, \vartheta_t) \right) q_t^B - \hat{\tau}_t a_t u(q_t^B, \vartheta_t) \right) dt & \text{state evolution} \\ u(q_t^B, \vartheta_t) &= \rho \frac{q_t^B}{a_t \vartheta_t} & \text{market clearing} \\ \pi(q_t^B, \vartheta_t) &= \kappa \left(\left(u(q_t^B, \vartheta_t) \right)^{1+\nu} - 1 \right) & \text{Phillips curve} \end{aligned}$$

- IS equation was one of the key equations in model without bonds
- Here, it appears to be gone. How can that be?
- Answer: it is implicit in the consumption rule $c_t^i = \rho n_t^i$
 - IS equation is Euler equation (consumption-savings choice) combined with Fisher equation
 - all we need for FTPL is that higher wealth leads to higher consumption demand (plus exact value for c_t/n_t to compute demand)
 - beyond this, intertemporal substitution not key to any mechanism here
- What really matters is portfolio demand for nominal bonds (ϑ_t)

Effects of Interest Rate Hike under Active Fiscal Policy

Effects of Fiscal Tightening under Active Fiscal Policy

Limited Effectiveness of Interest Rate Policy

- Suppose we have a shock at t = 0 that moves either ϑ_0 or a_0
 - Under flexible prices, q_0^B would adjust
 - Under sticky prices, it is a state variable and adjusts only sluggishly
- Monetary policy cannot do anything to restore $u_0 = 1$ on shock impact:

$$u_t = \rho \frac{q_t^B}{a_t \vartheta_t}$$

- To correct demand: need fiscal policy to move portfolio weight ϑ_t (interest policy can merely manage the transition dynamics)
- \rightarrow Monetary policy alone no longer able to implement first best allocation, even if it sets $i_t = r_t^*$ in equilibrium
- *Remark*: introducing long-term bonds restores some ability of *i*_t-policy to manage demand on impact, but perfect stabilization still infeasible

Baseline Real Model

2 Money as a Pure Unit of Account

- Flexible Goods Prices
- Sticky Goods Prices
- Interest Rate Policy

In the second second

- Portfolio Choice with Nominal Bonds and the Price LevelEquilibrium Dynamics under Active Fiscal Policy
- Eliminating Fiscal Effects: Passive Fiscal Policy

Passive Fiscal Policy

- Fiscal policy is "passive" if it adjusts surpluses to rising debt levels
- Simple example of a passive rule (zero intercept is not crucial, but simplifies argument on next slide)

$$\tau_t = \alpha q_t^B, \qquad \alpha > 0$$

• <u>Proposition</u>: if fiscal policy is passive, then *any* initial portfolio weight ϑ_0 is consistent with equilibrium

equivalent: any initial real value of debt q_0^B satisfies the debt valuation equation

- Significance of this result: portfolio choice/debt valuation indeterminacy brings back indeterminacy of price level/inflation
- Aside: this result is also of interest outside monetary economics, e.g. for debt sustainability tests (Bohn 1998)

Why Does Proposition Hold?

• Government flow budget constraint implies real debt evolution

$$dq_t^B = \left(r_t q_t^B - au_t
ight) dt$$

• With passive surplus rule (specific example above)

$$dq_t^B = (r_t - \alpha) q_t^B dt \qquad \Rightarrow \qquad q_T^B = q_0^B \exp\left(\int_0^T (r_t - \alpha) dt\right)$$
$$\Rightarrow \qquad \exp\left(-\int_0^T r_t dt\right) q_T^B = q_0^B e^{-\alpha T} \to 0$$

as T
ightarrow 0 for any q_0^B

- So any q_0^B is consistent with debt evolution and household transversality condition
- How does this work?
 - as q_t^B grows surpluses rise at least linearly with q_t^B
 - prevents decay in "dividend yield" and keeps debt growth rate strictly below the interest rate

Equilibrium with Passive Fiscal Policy

- Under passive fiscal policy, the model works like our first model without bonds
 - price level/inflation is indeterminate
 - fiscal policy adjusts in the background to debt dynamics
- Fiscal shocks affect economy at most as a coordination device (due to multiplicity)
- If interest rate policy eliminates multiplicity with a Taylor rule: inflation and output gaps are insulated from fiscal shocks

(key difference to active fiscal policy)

- Can then assign the task of inflation/output gap stabilization solely to monetary policy
- \rightarrow Standard doctrine in New Keynesian economics:
 - let fiscal policy worry about stabilizing the debt
 - let monetary policy worry about inflation and output gaps
- But note: even under passive fiscal policy, the model has predictions for fiscal variables

Passive Policy: Fiscal Implications of Interest Rate Hike

Outline

Baseline Real Model

2 Money as a Pure Unit of Account

- Flexible Goods Prices
- Sticky Goods Prices
- Interest Rate Policy

3 Government Debt and Fiscal Theory of the Price Level

- Portfolio Choice with Nominal Bonds and the Price Level
- Equilibrium Dynamics under Active Fiscal Policy
- Eliminating Fiscal Effects: Passive Fiscal Policy

Modified Model with Idiosyncratic Risk

- Consider again the model with government bonds and assume passive fiscal policy $(\alpha > {\rm 0})$
- Now add idiosyncratic risk as in Markus' earlier lecture
 - capital k_t^i of household *i* evolves according to

$$rac{dk_t^i}{k_t^i} = \underbrace{d\Delta_t^{k,i}}_{ ext{trading}} + \underbrace{ ilde{\sigma}_t d ilde{Z}_t^i}_{ ext{idio. shocks}}$$

- $\tilde{\sigma}_t$ follows exogenous path
- In this model, bonds represent safe assets (provide service flows from re-trading)
- Portfolio choice implies

$$\mathbb{E}_t[d\vartheta_t] = \left(\rho - \alpha - (1 - \vartheta_t)^2 \tilde{\sigma}_t^2\right) \vartheta_t dt$$

Portfolio Choice Solution Structure

$$\mathbb{E}_t[d\vartheta_t] = \left(\rho - \alpha - (1 - \vartheta_t)^2 \tilde{\sigma}_t^2\right) \vartheta_t dt$$

- Assume $\alpha < \rho$ (so that government does not repay all debt eventually)
- There is a continuum of solutions ϑ_t
- But only one of them satisfies $\lim_{t \to \infty} \vartheta_t \in (0,\infty)$
- This solution is locally isolated, while all others have alternative solutions "nearby" (same conclusion also holds for implied equilibrium consumption risk and natural rate)
- \Rightarrow With safe asset demand, portfolio choice has "locally unique" solution for ϑ even under passive fiscal policy (can also make it globally unique with off-equilibrium arguments, see "The Fiscal Theory with a Bubble")

Price Level/Inflation Determination from Safe Asset Demand

- Because ϑ_t uniquely determined: FTPL predictions even with passive fiscal policy
- Flexible prices:
 - safe asset portfolio demand determines the price level

$$\frac{\mathcal{B}_t}{\mathcal{P}_t} = q_t^B = \vartheta_t \frac{\mathsf{a}_t}{\rho}$$

- Sticky prices:
 - q_t^B state variable, adjusts only gradually

$$dq_t^B = (i_t - \pi_t + \alpha)q_t^B dt$$

• variations in portfolio demand (e.g. due to higher $\tilde{\sigma}_t$) have demand effects

$$u_t = \frac{\rho q_t^B}{a_t \vartheta_t}$$

Do Effects from Safe Asset Demand Matter? We Believe So

Source: Li, Merkel (2022)

Also policy conclusions as in FTPL model with active policy:

- Interest rate policy cannot move the initial state, only manage the transition dynamics (and interest rate policy is neo-Fisherian, but can be fixed with long-term bonds...)
- Setting i_t to the natural rate r_t^* does not implement the flexible price allocation
- To move initial state, more aggressive fiscal adjustments are needed in response to shocks
 - $\bullet\,$ can no longer rely on automatic stabilization to kick in eventually when $\alpha>0$
 - $\bullet\,$ instead, need α_t to respond to initial shock to move ϑ_0
- Suggests fiscal policy has to play a more active role in macro stabilization

Is there a "Super-Passive" Fiscal Regime? Is it Desirable?

- Could we design a "super-passive" fiscal regime that renders ϑ_t indeterminate?
 - possibly yes, but requires stronger than linear reaction to debt
- Does this bring us back to the conventional NK analysis?
 - with regard to aggregate demand and inflation stabilization: yes
 - $i_t = r_t^*$ plus Taylor rule selects zero inflation equilibrium
 - fiscal policy adjusts in the background to make portfolio choice consistent with it
 - but: this policy destroys the safe asset feature (negative β) of government debt
 - when safe asset demand rises, government makes bonds unattractive by lowering surpluses
 - mitigates flight to safety, bonds no longer appreciate in value
- Such a policy would not be optimal, at least in response to $\tilde{\sigma}_t$ shocks
 - want to allow for some flight to safety to improve risk sharing
 - optimal policy trades off aggregate demand stabilization with risk sharing

Summary

- Simple Money Model without Bonds in Positive Supply
 - key condition: IS equation (intertemporal substitution)
 - $\bullet\,$ policy effects depend on equilibrium selection, stabilization policy = expectations management
 - can be achieved with interest rate policy (plus Taylor rule)
- Model with Nominal Government Bonds
 - portfolio demand for bonds can render nominal side determinate (FTPL)
 - when fiscal policy is active
 - bond value becomes a state variable
 - fiscal shocks matter for inflation and aggregate demand
 - interest rate policy alone cannot stabilize economy
 - passive fiscal policy restores intution of first model
- Safe Asset Model
 - even with passive policy, portfolio demand for bonds can matter for inflation and demand
 - interest policy again not sufficient for stabilization
 - aggressive fiscal policy can stabilize, but not necessarily optimal