Economies with

Financial Frictions Review and Exercises

The 2022 Princeton Initiative

Asset pricing: implications

$$
\operatorname{SDF} \xi_{t}=e^{-\rho t} u^{\prime}\left(c_{t}\right) \quad \mu_{t}^{A}+\mu_{t}^{\xi}+\sigma_{t}^{A} \sigma_{t}^{\xi}=0
$$

- Valuation (e.g. the price of capital q_{t})
- Asset allocation:
$\mu_{t}^{A, i}+\mu_{t}^{\xi, i}+\sigma_{t}^{A, i} \sigma_{t}^{\xi_{i}, i} \leq 0$,
$=$ if agent i holds >0 of asset A
- Evolution of wealth and wealth distribution

Example: valuation

- Representative agent, CRRA utility, so $\xi_{t}=e^{-\rho t} c_{t}^{-\nu}$
- Single asset with divided D_{0}, exp. growth g, volatility σ
- Find asset price and risk-free rate

$$
\begin{aligned}
& \frac{d c_{t}}{c_{t}}=\frac{d D_{t}}{D_{t}}=g d t+\sigma d Z_{t} \Rightarrow \frac{d c_{t}^{-\gamma}}{c_{t}^{-\gamma}}=-\gamma g d t+\frac{\gamma(\gamma+1)}{2} \sigma^{2} d t-\gamma \sigma d Z_{t} \\
& d r_{t}^{A}=\frac{D_{0}}{q_{0}} d t+g d t+\sigma d Z_{t} \Rightarrow \underbrace{\frac{D_{0}}{q_{0}}+g-\rho-\gamma g+\underbrace{\frac{\gamma(\gamma+1)}{2} \sigma^{2}}_{+\mu^{\xi}=-r^{F}}}_{\mu^{A}}-\gamma \sigma \sigma=0
\end{aligned}
$$

Note: if $\gamma=1, D_{0} / q_{0}=\rho$
\qquad

Model from online lectures

$$
\frac{d K_{t}}{K_{t}}=\left(\Phi\left(\iota_{t}\right)-\delta\right) d t+\sigma d Z_{t}
$$

experts

Output per unit of capital $\mathbf{a}-\mathrm{I}_{\mathrm{t}}$	$\mathbf{a}-\mathrm{I}_{\mathrm{t}}, \mathbf{a} \leq \mathrm{a}$		
CRRA utility, discount rate ρ	$\mathbf{\Omega}<\rho$		
issue debt \& equity, but keep risk $\mathrm{X}_{\mathrm{t}} \geq-\mathrm{x}$			

Liquid markets for capital k_{t} with endogenous price per unit q_{t}
$d q_{t} / q_{t}=\mu_{t}{ }^{q} d t+\sigma_{t}{ }^{q} d Z_{t}$
Question about allocation: Assume log utility and_X = 1, i.e. experts can issue only debt. What equation describes ψ, the fraction of capital held by experts?

Example: evolution of wealth and η : logarithmic utility

Consumption $=\rho$ wealth

Price of risk: $\quad \sigma_{t}^{\xi}=-\sigma_{t}^{C}=-\sigma_{t}^{N}=-\frac{\psi_{t}}{\eta_{t}}\left(\sigma+\sigma_{t}^{q}\right) \quad \eta_{t}=\frac{N_{t}}{N_{t}+\underline{N}_{t}}$
Hence, $\quad \frac{d N_{t}}{N_{t}}=r_{t}^{F} d t-\underbrace{\frac{C_{t}}{N_{t}}}_{\rho} d t+\underbrace{\frac{\psi_{t}}{\eta_{t}}\left(\sigma+\sigma_{t}^{q}\right)}_{\text {risk }}\left(d Z_{t}+\frac{\psi_{t}}{\eta_{t}}\left(\sigma+\sigma_{t}^{q}\right) d t\right)$

$$
\frac{d \underline{N}_{t}}{\underline{N}_{t}}=r_{t}^{F} d t-\underbrace{\frac{C_{t}}{N_{t}}}_{\underline{\varrho}} d t+\underbrace{\frac{1-\psi_{t}}{1-\eta_{t}}\left(\sigma+\sigma_{t}^{q}\right)}_{\text {risk }}\left(d Z_{t}+\frac{1-\psi_{t}}{1-\eta_{t}}\left(\sigma+\sigma_{t}^{q}\right) d t\right)
$$

Ito implies that $\quad \frac{d \eta_{t}}{\eta_{t}}=\ldots$

Example: allocation, logarithmic utility

Consumption $=\rho$ wealth

$\psi a+(1-\psi) \underline{a}-\iota(q)=(\rho \eta+\underline{\rho}(1-\eta)) q$
Price of risk (experts): $\quad \sigma_{t}^{\xi}=-\sigma_{t}^{C}=-\sigma_{t}^{N}=-\frac{\psi_{t}}{\eta_{t}}\left(\sigma+\sigma_{t}^{q}\right)$
Asset pricing (experts): $\frac{a-\iota_{t}}{q_{t}}+$ cap. gains rate $-r_{t}^{F}+\left(\sigma+\sigma^{q}\right)\left(-\frac{\psi_{t}}{\eta_{t}}\left(\sigma+\sigma^{q}\right)\right)=0$ households: \quad subtracting $\frac{\frac{\underline{a}-\iota_{t}}{q_{t}}+\text { cap. gains rate }-r_{t}^{F}+\left(\sigma+\sigma^{q}\right)\left(-\frac{1-\psi_{t}}{1-\eta_{t}}\left(\sigma+\sigma^{q}\right)\right)=0}{\frac{a-\underline{a}}{q_{t}}=\left(\frac{\psi_{t}}{\eta_{t}}-\frac{1-\psi_{t}}{1-\eta_{t}}\right)\left(\sigma+\sigma_{t}^{q}\right)^{2}}$

6

Asset pricing: implications

- Valuation (e.g. the price of capital q_{t})
- Asset allocation: $\quad \mu_{t}^{A, i}+\mu_{t}^{\xi, i}+\sigma_{t}^{A, i} \sigma_{t}^{\xi, i} \leq 0$,
with equality if agent i holds asset A in positive amount
- Evolution of wealth and wealth distribution

Also, to solve the model we need understanding of

- endogenous risk
- value functions (for numerical solutions)

Liquid markets for capital k_{t} with endogenous price per unit q_{t}

$$
d q_{t} / q_{t}=\mu_{t} q^{q} d t+\sigma_{t}{ }^{q} d Z_{t}
$$

Assume log utility and_x = 1, i.e. experts can issue only debt. Let's solve it!

Now, today's exercise

- Households + experts, a =a
- Capital

$$
\frac{d k_{t}}{k_{t}}=\left(\Phi\left(\iota_{t}\right)-\delta\right) d t+\sigma d Z_{t}+\varphi \tilde{\sigma} d \tilde{Z}_{t}
$$

- Log utility (consumption $=\rho \cdot$ wealth)
- Households

$$
E\left[\int_{0}^{\infty} e^{-\rho t} \log \underline{c}_{t} d t\right]
$$

- Experts

$$
E\left[\int_{0}^{\infty} \zeta_{t} \log c_{t} d t\right] \quad \frac{d \zeta_{t}}{\zeta_{t}}=-\rho d t+\sigma^{\zeta} d Z_{t}
$$

- Risk dZ is tradable (price of risk ς_{t})

10

Big picture

- Valuation (e.g. the price of capital q_{t})

$$
\rho q_{t}=a-\iota\left(q_{t}\right)
$$

- Allocation
- capital
- aggregate risk

$$
\begin{aligned}
& \frac{a-\iota_{t}}{q_{t}}+\text { cap. gains rate }-r_{t}^{F}+\left(\sigma+\sigma_{t}^{q}\right) \varsigma_{t}+\varphi \tilde{\sigma} \underbrace{\frac{a-\iota_{t}}{q_{t}}+\text { cap. gains rate }-r_{t}^{F}+\left(\sigma+\sigma_{t}^{q}\right) \varsigma_{t}+\tilde{\sigma} \underbrace{\frac{1-\psi_{t}}{1-\eta_{t}}}_{\text {price of idiosyncratic risk, H }}=0}_{\text {price of } \underbrace{\frac{\psi_{t}}{\eta_{t}} \varphi \tilde{\sigma}}_{\text {diosyncratic risk, E }}=0}=0 \\
& \sigma_{t}^{\xi}=- \text { volatility of marginal utility }=\varsigma_{t}
\end{aligned}
$$

- Evolution of the wealth distribution

Question 1

- What is the price of aggregate risk for households and experts, if households' wealth is N_{t} and experts', N_{t} ?
(a) $-\sigma_{t}{ }^{\mathrm{N}}$
and
$-\sigma_{t}{ }^{N}$
(b) $-\sigma_{t} \mathrm{~N}$ and
$-\sigma_{t}{ }^{\mathrm{N}}+\sigma^{\zeta}$
(c) $\sigma_{t}{ }^{N}$ and $\sigma_{t}{ }^{N}-\sigma^{\zeta}$
(d) $\sigma_{t} N$ and
$\sigma_{t}{ }^{N}+\sigma^{\zeta}$
(e) none of the above

Question 1

- For experts, $\mathrm{MU}=\zeta_{t} / c_{\mathrm{t}}$, volatility $\sigma^{\zeta}-\sigma_{\mathrm{t}}^{\mathrm{c}}=\sigma^{\zeta}-\sigma_{\mathrm{t}}{ }^{\mathrm{N}}$.
- Price of risk $=-$ volatility of $\mathrm{MU}, \sigma_{t}{ }^{\mathrm{N}}-\sigma^{\zeta}$ for E and $\sigma_{t}{ }^{\mathrm{N}}$-for H .
- Both must equal ς_{t} since aggregate risk is tradable

$$
\begin{aligned}
& \sigma_{t}^{N}-\sigma^{\zeta}=\sigma_{t} N=\varsigma_{t} \\
& \varsigma_{t}=\eta\left(\sigma_{t}^{N}-\sigma^{\zeta}\right)+(1-\eta) \sigma_{t}^{N}=\sigma-\eta \sigma^{\zeta}
\end{aligned}
$$

Question 2

(2) Given the fraction ψ_{t} of capital held by entrepreneurs, what are the prices of idiosyncratic risk $\tilde{\varsigma}_{t}$ and $\tilde{\underline{\varsigma}}_{t}$ for entrepreneurs and households?
(a) $\tilde{\varsigma}_{t}=\frac{\psi_{t}}{\eta_{t}} \tilde{\sigma} \quad \tilde{\underline{S}}_{t}=\frac{1-\psi_{t}}{1-\eta_{t}} \tilde{\sigma}$
(b) $\tilde{\varsigma}_{t}=\frac{\psi_{t}}{\eta_{t}} \varphi \tilde{\sigma} \quad \tilde{\underline{S}}_{t}=\frac{1-\psi_{t}}{1-\eta_{t}} \tilde{\sigma}$
(c) $\tilde{\varsigma}_{t}=\frac{\psi_{t}}{\eta_{t}} \varphi \tilde{\sigma} \quad \tilde{\varsigma}_{t}=\frac{1-\psi_{t}}{1-\eta_{t}} \varphi \tilde{\sigma}$
(d) $\tilde{\varsigma}_{t}=\tilde{\underline{S}}_{t}=\varphi \tilde{\sigma}$

Question 3

(3) As a function of the entrepreneurs' wealth share η_{t}, determine the fraction of capital ψ_{t} that entrepreneurs hold in equilibrium.

- Hint:

Question 3

(3) As a function of the entrepreneurs' wealth share η_{t}, determine the fraction of capital ψ_{t} that entrepreneurs hold in equilibrium.

- Hint: $\quad \frac{a-\iota_{t}}{q_{t}}+$ cap. gains rate $-r_{t}^{F}+\left(\sigma+\sigma_{t}^{q}\right)_{\varsigma_{t}}+\varphi \tilde{\sigma} \quad \underbrace{\frac{\psi_{t}}{\eta_{t}} \varphi \tilde{\sigma}}=0$ $\frac{a-\iota_{t}}{q_{t}}+$ cap. gains rate $-r_{t}^{F}+\left(\sigma+\sigma_{t}^{q}\right) \varsigma_{t}+\tilde{\sigma} \underbrace{\underbrace{\frac{1-\psi_{t}}{1-\eta_{t}}}_{\text {price of idiosyncratic risk, } \mathrm{E}}=0 .{ }_{\sigma}}_{\text {price of idiosyncratic risk, H }}=0$

$$
\frac{\psi_{t}}{\eta_{t}} \varphi^{2} \tilde{\sigma}^{2}=\frac{1-\psi_{t}}{1-\eta_{t}} \tilde{\sigma}^{2} \quad \Rightarrow \quad \psi_{t}=\frac{\eta_{t}}{\eta_{t}+\left(1-\eta_{t}\right) \varphi^{2}}
$$

Question 5

(5) Which expression gives the law of motion of total wealth $q_{t} K_{t}$?

Recall that

$$
\sigma_{t}^{N}=\varsigma_{t}, \quad \sigma_{t}^{N}=\varsigma_{t}+\sigma^{\zeta} .
$$

(a) $\frac{d\left(q_{t} K_{t}\right)}{q_{t} K_{t}}=\frac{a-\iota_{t}}{q_{t}} d t+\left(\mu_{t}^{q}+\Phi\left(\iota_{t}\right)-\delta+\sigma \sigma_{t}^{q}\right) d t+\left(\sigma+\sigma_{t}^{q}\right) d Z_{t}-\rho d t$
(b) $\frac{d\left(q_{t} K_{t}\right)}{q_{t} K_{t}}=\left(\mu_{t}^{q}+\Phi\left(\iota_{t}\right)-\delta+\sigma \sigma_{t}^{q}\right) d t+\left(\sigma+\sigma_{t}^{q}\right) d Z_{t}$
(c) $\frac{q_{t} K_{t}}{d\left(q_{t} K_{t}\right)} q_{t} K_{t}=\left(r_{t}^{F}-\rho+\left(\varsigma_{t}+\eta \sigma^{\zeta}\right) \varsigma_{t}+\frac{\psi_{t}^{2}}{\eta_{t}} \varphi^{2} \tilde{\sigma}^{2}+\frac{\left(1-\psi_{t}\right)^{2}}{1-\eta_{t}} \tilde{\sigma}^{2}\right) d t+\left(\varsigma_{t}+\eta \sigma^{\varsigma}\right) d Z_{t}$
(d) all of the above
(e) (a) and (b) but not (c)

- Which equation should we use to derive the law of motion of η ?

Question 4

(4) If the risk-free rate is r_{t}^{\digamma}, which of the following expressions gives the law of motion of experts' wealth N_{t} ? Recall that

$$
\sigma_{t}^{N}=\varsigma_{t}, \quad \sigma_{t}^{N}=\varsigma_{t}+\sigma^{\zeta} .
$$

(a) $\frac{d N_{t}}{N_{t}}=\left(r_{t}^{F}+\left(\varsigma_{t}+\sigma^{\zeta}\right) \varsigma_{t}+\frac{\psi_{t}}{\eta_{t}} \varphi \tilde{\sigma}^{2}\right) d t+\left(\varsigma_{t}+\sigma^{\zeta}\right) d Z_{t}$
(b) $\frac{d N_{t}}{N_{t}}=\left(r_{t}^{F}-\rho+\left(\varsigma_{t}+\sigma^{\zeta}\right) \varsigma_{t}+\frac{\psi_{t}^{2}}{\eta_{t}^{2}} \varphi^{2} \tilde{\sigma}^{2}\right) d t+\left(\varsigma_{t}+\sigma^{\zeta}\right) d Z_{t}$
(c) $\frac{d N_{t}}{N_{t}}=\left(r_{t}^{F}-\rho+\left(\varsigma_{t}+\sigma^{\zeta}\right)^{2}+\frac{\psi_{t}^{2}}{\eta_{t}^{2}} \varphi^{2} \tilde{\sigma}^{2}\right) d t+\left(\varsigma_{t}+\sigma^{\zeta}\right) d Z_{t}$
(d) $\frac{d N_{t}}{N_{t}}=\left(r_{t}^{F}-\rho+\frac{\psi_{t}}{\eta_{t}} \sigma \varsigma_{t}+\frac{\psi_{t}}{\eta_{t}} \varphi \tilde{\sigma}^{2}\right) d t+\frac{\psi_{t}}{\eta_{t}} \sigma d Z_{t}$

18

Question 6

- Derive the law of motion of η. Recall that

$$
\frac{d N_{t}}{N_{t}}=\left(r_{t}^{F}-\rho+\left(\varsigma_{t}+\sigma^{\zeta}\right) \varsigma_{t}+\frac{\psi_{t}^{2}}{\eta_{-}^{2}} \varphi^{2} \tilde{\sigma}^{2}\right) d t+\left(\varsigma_{t}+\sigma^{\zeta}\right) d Z_{t}
$$

$$
\psi_{t}=\frac{\eta_{t}}{\eta_{t}+\left(1-\eta_{t}\right) \varphi^{2}}
$$

$$
\frac{d\left(X_{t} / Y_{t}\right)}{X_{t} / Y_{t}}=\left(\mu_{t}^{X}-\mu_{t}^{Y}-\sigma_{t}^{Y}\left(\sigma_{t}^{X}-\sigma_{t}^{Y}\right)\right) d t+\left(\sigma_{t}^{X}-\sigma_{t}^{Y}\right) d Z_{t}
$$

Question $6 \quad \frac{d\left(X_{t} / Y_{t}\right)}{X_{t} / Y_{t}}=\left(\mu_{t}^{X}-\mu_{t}^{Y}-\sigma_{t}^{Y}\left(\sigma_{t}^{X}-\sigma_{t}^{Y}\right)\right) d t+\left(\sigma_{t}^{X}-\sigma_{t}^{Y}\right) d Z_{t}$

- Derive the law of motion of η. You can use

$$
\begin{gathered}
\frac{d N_{t}}{N_{t}}=\left(r_{t}^{F}-\rho+\left(\varsigma_{t}+\sigma^{\zeta}\right) \varsigma_{t}+\frac{\psi_{t}^{2}}{\eta_{t}^{2}} \varphi^{2} \tilde{\sigma}^{2}\right) d t+\left(\varsigma_{t}+\sigma^{\zeta}\right) d Z_{t} \quad \psi_{t}=\frac{\eta_{t}}{\eta_{t}+\left(1-\eta_{t}\right) \varphi^{2}} \\
\frac{d\left(q_{t} K_{t}\right)}{q_{t} K_{t}}=(r_{t}^{F}-\rho+\left(\varsigma_{t}+\eta \sigma^{\zeta}\right) \varsigma_{t}+\underbrace{\left.\frac{\psi_{t}^{2}}{\eta_{t}} \varphi_{\text {since }}^{2} \tilde{\sigma}^{2}+\frac{\varphi_{t}}{\frac{\left(1-\psi_{t}\right)^{2} \varphi^{2} \tilde{\sigma}^{2}=\frac{1-\varphi_{t}}{1-\eta_{t}} \tilde{\sigma}^{2}}{1-\eta_{t}} \tilde{\sigma}^{2}}\right) d t+\left(\varsigma_{t}+\eta \sigma^{\zeta}\right) d Z_{t}}_{\frac{\psi_{t}}{\eta_{t}} \varphi^{2} \tilde{\sigma}^{2}} \\
\frac{d \eta_{t}}{\eta_{t}}=\left((1-\eta) \frac{\varphi^{2}\left(1-\varphi^{2}\right) \tilde{\sigma}^{2}}{\left(\eta+(1-\eta) \varphi^{2}\right)^{2}}+\eta(\eta-1)\left(\sigma^{\zeta}\right)^{2}\right)+(1-\eta) \sigma^{\zeta} d Z_{t}
\end{gathered}
$$

Bonus question

- Suppose we have a Markov diffusion process

$$
d X_{t}=\mu\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d Z_{t}
$$

then density over X follows

$$
g_{t}(x, t)=-\frac{\partial}{\partial x}(\mu(x) g(x, t))+\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}\left(\sigma(x)^{2} g(x, t)\right)
$$

Stationary density satisfies

$$
g(x)=\text { const } \frac{1}{\sigma(x)^{2}} \exp \left(\int \frac{2 \mu(y)}{\sigma(y)^{2}} d y\right)
$$

For today's exercise, under what conditions does the stationary density exist?

Summary

- Valuation (e.g. the price of capital q_{t})

$$
\rho q_{t}=a-\iota\left(q_{t}\right)
$$

- Capital allocation

$$
\psi_{t}=\frac{\eta_{t}}{\eta_{t}+\left(1-\eta_{t}\right) \varphi^{2}}
$$

- Wealth distribution
$\frac{d \eta_{t}}{\eta_{t}}=\left((1-\eta) \frac{\varphi^{2}\left(1-\varphi^{2}\right) \tilde{\sigma}^{2}}{\left(\eta+(1-\eta) \varphi^{2}\right)^{2}}+\eta(\eta-1)\left(\sigma^{\varsigma}\right)^{2}\right)+(1-\eta) \sigma^{\varsigma} d Z_{t}$

22

Economies with Financial Frictions Exercise Continued

The 2022 Princeton Initiative

