Modern Macro, Money, and International Finance Eco529 Lecture 05: Endogenous Risk Dynamics in Real Macro Model with Heterogenous Agents

Markus K. Brunnermeier Princeton University

Course Overview

Real Macro-Finance Models with Heterogeneous Agents

- A Simple Real Macro-finance Model
- Endogenous (Price of) Risk Dynamics 2.
- A Model with Jumps due to Sudden Stops/Runs 3.

Money Models

- A Simple Money Model 1.
- Cashless vs. Cash Economy and "The I Theory of Money" 2.
- Welfare Analysis & Optimal Policy 3.
 - Fiscal, Monetary, and Macroprudential Policy

International Macro-Finance Models

International Financial Architecture Digital Money

Risk premia, price of risk

- Risk premia = price of risk * (endogenous + exogenous risk)
 - Exogenous risk shock from outside
 - Endogenous risk
 - Amplification: adverse feedback loops
 - Multiple equilibria: Run, Sudden Stops

- Non-linearities are key for financial stability
 - Around vs. away from steady state

Desired Model Properties

- Normal regime: stable around steady state
 - Experts are adequately capitalized
 - Experts can absorb macro shock
- Endogenous risk and price of risk
 - Fire-sales, liquidity spirals, fat tails
 - Spillovers across assets and agents
 - Market and funding liquidity connection
 - SDF vs. cash-flow news
- Volatility paradox
- Financial innovation
 less stable economy
- ("Net worth trap" double-humped stationary distribution)

Persistence Leads to Dynamic Amplification

- Static amplification occurs because fire-sales of capital from productive sector to less productive sector depress asset prices
 - Importance of *market liquidity* of physical capital
- Dynamic amplification occurs because a temporary shock translates into a persistent decline in output and asset prices
 - Forward grow net worth
 - Backward asset pricing

"Single Shock Critique"

- Critique: After the shock all agents in the economy know that the economy will deterministically return to the steady state.
 - Length of slump is deterministic (and commonly known)
 - No safety cushion needed
 - In reality an adverse shock may be followed by additional adverse shocks
 - Build-up extra safety cushion for an additional shock in a crisis
- Impulse response vs. volatility dynamics

Endogenous Volatility & Volatility Paradox

Endogenous Risk/Volatility Dynamics in BruSan

Later: in Money lecture

 \Rightarrow Nonlinearities in crisis \Rightarrow endogenous fait tails, skewness

- Volatility Paradox
 - Low exogenous (measured) volatility leads to high build-up of (hidden) endogenous volatility

(Minksy)

0.6

η

0

0.8

BruSan 2017: Two Type/Sector Model with Outside Equity Handbook of Macroeconomics, Lecture Notes, Chatper 3

- Skin in the Game Constraint: Experts must hold fraction $\chi_t^e \geq \alpha \kappa_t^e$ of aggregate capital risk with $\alpha \in (0,1)$ ($\chi_t^e > \kappa_t^e$ never happens in equilibrium)
- Return on inside equity N_t can differ from outside equity
 - Issue outside equity at required return from HH
 - In related model, He and Krishnamurthy 2013 impose that inside and outside equity have same return

Financial Frictions and Distortions UPDATE!

- Skin in the game constraint
 - Retain certain fraction of risk
- Incomplete markets
 - "natural" leverage constraint (BruSan)
 - Costly state verification
- + Leverage constraints (no "liquidity creation")
 - Exogenous limit
 - Collateral constraints
 - Next period's price

 $Rb_t \le q_{t+1}k_t$

- Next periods volatility
- Current price

(KM)

(BGG)

(VaR, JG)

(Bewley/Ayagari)

Occasionally binding equity constraint

state 1

Household sector Expert sector

• Output: $y_t^e = a^e k_t^e$ $a^e \ge a^h$ • Output: $y_t^h = a^h k_t^h$

$$(\boldsymbol{\kappa}) = \kappa^e a^e + (1 - \kappa^e) a^h$$

Poll 10: Why is it important that households can hold capital? a) to capture fire-sales b) for households to speculate c) to obtain stationary distribution

Expert sector

- Output: $y_t^e = a^e k_t^e$ $a^e \ge a^h$ Output: $y_t^h = a^h k_t^h$
- Consumption rate: c_t^e
- Investment rate: ι_{t}^{e} $\frac{dk_{t}^{\tilde{i},e}}{k_{t}^{\tilde{i},e}} = \left(\Phi\left(\iota_{t}^{\tilde{i},e}\right) \delta\right)dt + \sigma dZ_{t} + d\Delta_{t}^{k,e}$ $\frac{dk_{t}^{\tilde{i},h}}{k_{t}^{\tilde{i},h}} = \left(\Phi\left(\iota_{t}^{\tilde{i},h}\right) \delta\right)dt + \sigma dZ_{t} + d\Delta_{t}^{k,h}$

Household sector

Consumption rate: c_t^h

Physical capital evolution absent market transactions/fire-sales

Expert sector

• Output:
$$y_t^e = a^e k_t^e$$

- Consumption rate: c_t^e
- Investment rate: $\begin{aligned}
 l_{t}^{\tilde{\iota},e} \\
 \frac{dk_{t}^{\tilde{\iota},e}}{k_{\star}^{\tilde{\iota},e}} &= \left(\Phi\left(\iota_{t}^{\tilde{\iota},e}\right) \delta\right)dt + \sigma dZ_{t} + d\Delta_{t}^{k,e}
 \end{aligned}$ Investment rate: $l_{t}^{h} \\
 \frac{dk_{t}^{\tilde{\iota},h}}{k_{\star}^{\tilde{\iota},h}} &= \left(\Phi\left(\iota_{t}^{\tilde{\iota},h}\right) \delta\right)dt + \sigma dZ_{t} + d\Delta_{t}^{k,h}
 \end{aligned}$

Household sector

 $a^e \ge a^h$ •Output: $y_t^h = a^h k_t^h$

Consumption rate: c_t^h

Poll 12: What are the modeling tricks to obtain stationary distribution? a) switching types b) agents die, OLG/perpetual youth models (without bequest motive) *c) different preference discount rates*

Expert sector

• Output:
$$y_t^e = a^e k_t^e$$

- Consumption rate: c_t^e
- Investment rate: ι_t^e Investment rate: $\begin{aligned}
 & \iota_t^e \\
 & \frac{dk_t^{\tilde{i},e}}{k_t^{\tilde{i},e}} = \left(\Phi(\iota_t^{\tilde{i},e}) - \delta\right)dt + \sigma dZ_t + d\Delta_t^{k,e} \\
 & \frac{dk_t^{\tilde{i},h}}{k_t^{\tilde{i},h}} = \left(\Phi(\iota_t^{\tilde{i},h}) - \delta\right)dt + \sigma dZ_t + d\Delta_t^{k,h}
 \end{aligned}$

Household sector

 $a^e \ge a^h$ •Output: $y_t^h = a^h k_t^h$

•Consumption rate: c_t^h

$$= E_0 \left[\int_0^\infty e^{-\rho^e t} \frac{(c_t^e)^{1-\gamma}}{1-\gamma} dt \right] \qquad \rho^e \ge \rho^h = E_0 \left[\int_0^\infty e^{-\rho^h t} \frac{(c_t^h)^{1-\gamma}}{1-\gamma} dt \right]$$

-dt

Expert sector

• Output:
$$y_t^e = a^e k_t^e$$

- Consumption rate: c_t^e
- Investment rate: $\begin{aligned}
 l_{t}^{\tilde{\iota},e} \\
 \frac{dk_{t}^{\tilde{\iota},e}}{k_{t}^{\tilde{\iota},e}} &= \left(\Phi\left(\iota_{t}^{\tilde{\iota},e}\right) \delta\right)dt + \sigma dZ_{t} + d\Delta_{t}^{k,e}
 \end{aligned}$ Investment rate: $l_{t}^{\mu} \\
 \frac{dk_{t}^{\tilde{\iota},h}}{k_{t}^{\tilde{\iota},h}} &= \left(\Phi\left(\iota_{t}^{\tilde{\iota},h}\right) \delta\right)dt + \sigma dZ_{t} + d\Delta_{t}^{k,h}
 \end{aligned}$ • Investment rate: ι_t^e

Household sector

 $a^e \ge a^h$ •Output: $y_t^h = a^h k_t^h$

•Consumption rate: c_t^h

$$= E_0 \left[\int_0^\infty e^{-\rho^e t} \frac{(c_t^e)^{1-\gamma}}{1-\gamma} dt \right] \qquad \rho^e \ge \rho^h = E_0 \left[\int_0^\infty e^{-\rho^h t} \frac{(c_t^h)^{1-\gamma}}{1-\gamma} dt \right]$$

Friction: Can only issue

- Risk-free debt
- Equity, but must hold $\chi_t^e \geq \alpha \kappa_t$

-dt

Recall Previous Lecture: HH can't hold capital or equity

Basak-Cuco

Preview of new, extended model

Parameters:
$$ho^e = .06,
ho^h = .05, a^e = .11, a^h = .03,$$

 $\delta = .05, \sigma = .01, lpha = .50, \gamma = 2, \phi = 10$

Preview $\mu^{\eta^e}(\eta^e)$ & $\sigma^{\eta^e}(\eta^e)$

Solving MacroModels Step-by-Step

- Postulate aggregates, price processes & obtain return processes 0.
- For given C/N-ratio and SDF processes for each *i* finance block 1.
 - Real investment ι + Goods market clearing *(static)* a.
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - Toolbox 2: "price-taking social planner approach" Fisher separation theorem
 - c. "Money evaluation equation" ϑ
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- Evolution of state variable η (and K) 2.
- Value functions 3.
 - Value fcn. as fcn. of individual investment opportunities ω а.
 - Special cases: log-utility, constant investment opportunities
 - b. Separating value fcn. $V^i(n^{\tilde{i}};\eta,K)$ into $v^i(\eta)u(K)(n^{\tilde{i}}/n^i)^{1-\gamma}$
 - Derive C/N-ratio and ς price of risk С.
- Numerical model solution 4.
 - a. Transform BSDE for separated value fcn. $v^{i}(\eta)$ into PDE
 - Solve PDE via value function iteration b.
- 5. KFE: Stationary distribution, Fan charts

forward equation backward equation

The Big Picture

equation Forward equation with expectations Backward

1a. Individual Agent Choice of ι , θ , c

Of experts with outside equity issuance (after plugging in) households' outside equity choice)

$$\frac{a^e - \iota_t}{q_t} + \Phi(\iota_t) - \delta + \mu_t^q + \sigma \sigma_t^q - r_t = [\varsigma_t^e \chi_t^e / \kappa_t^e + \varsigma_t^h (1 - \chi_t^e / \kappa_t^e)](\sigma + \sigma^q)$$

new compared to Basak-Cuoco

Of households' capital choice $\frac{a^{h}-\iota_{t}}{\sigma_{t}} + \Phi(\iota_{t}) - \delta + \mu_{t}^{q} + \sigma\sigma_{t}^{q} - r_{t} \leq \varsigma_{t}^{h}(\sigma + \sigma^{q})$ with equality if $\kappa_t^e < 1$

Note: alternative approach replaces this step with Fisher Separation Social Planners' choice (see Lecture Notes)

1b. Asset/Risk Allocation across *I* Types

- Sketch of Proof of Theorem
- Fisher Separation Theorem: (delegated portfolio choice by firm)
 - FOC yield the martingale approach solution
 - Each individual agent (i, \tilde{i}) portfolio maximization is equivalent to the maximization problem of a firm

$$\max_{\{\boldsymbol{\theta}^{j,i}\}} E_t \left[dr^{n^{(i,\tilde{\iota})}} \right] / dt - \varsigma \sigma^{r^n}$$

- $dr^{n^{(i,i)}} = \sum_{j} \theta^{j,i} dr^{j} = \sum_{j} \theta^{j,i} E[dr^{j}] + \sum_{j} \theta^{j,i} \sigma^{j} dZ_{t}$ is linear in θ s
 - Either bang-bang solution for θs s.t. portfolio constraints bind
 - Or prices/returns/risk premia are s.t. that firm is indifferent
- 2. Aggregate
 - Taking η -weighted sum to obtain return on aggregate wealth
- 3. Use market clearing to relate θ s to κ s & χ s (incl. θ -constraint)

Solving MacroModels Step-by-Step

- Postulate aggregates, price processes & obtain return processes 0.
- For given *C*/*N*-ratio and SDF processes for each *finance block* 1.
 - Real investment ι + Goods market clearing *(static)* a.
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - Toolbox 2: "price-taking social planner approach" Fisher separation theorem
 - c. "Money evaluation equation" ϑ
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- Evolution of state variable η (and K) 2.
- Value functions 3.
 - Value fcn. as fcn. of individual investment opportunities ω а.
 - Special cases: log-utility, constant investment opportunities
 - b. Separating value fcn. $V^i(n^{\tilde{i}};\eta,K)$ into $v^i(\eta)u(K)(n^{\tilde{i}}/n^i)^{1-\gamma}$
 - Derive C/N-ratio and ς price of risk С.
- Numerical model solution 4.
 - a. Transform BSDE for separated value fcn. $v^{i}(\eta)$ into PDE
 - Solve PDE via value function iteration b.
- KFE: Stationary distribution, Fan charts 5.

forward equation backward equation

Toolbox 3: Change of Numeraire

- x_t^A is a value of a self-financing strategy/asset in \$
- Y_t price of \in in (exchange rate) $\frac{dY_t}{Y_t} = \mu_t^Y dt + \sigma_t^Y dZ_t$

• x_t^A/Y_t value of the self-financing strategy/asset in \in

$$\underbrace{e^{-\rho t}u'(c_t)}_{=\xi_t}Y_t\frac{x_t^A}{Y_t} \text{ follows a martingale}$$
Recall $\mu_t^A - \mu_t^B = \underbrace{(-\sigma_t^\xi)}_{=\varsigma_t}\underbrace{(\sigma^A - \sigma_t^B)}_{risk}$
 $\mu_t^{A/Y} - \mu_t^{B/Y} = \underbrace{(-\sigma_t^\xi - \sigma_t^Y)}_{price of risk}\underbrace{(\sigma^A - \sigma_t^Y - \sigma_t^B)}_{risk}$

• Price of risk $c^{\notin} = c^{\$} - \sigma^{Y}$ Poll 23: Why does the price of risk change, though real risk remains the same a) because risk-free rate might not stay risk-free *b)* because covariance structure changes

Toolbox 3: Change of Numeraire

- x_t^A is a value of a self-financing strategy/asset in \$
- Y_t price of € in \$ (exchange rate) $\frac{dY_t}{Y_t} = \mu_t^Y dt + \sigma_t^Y dZ_t$

• x_t^A/Y_t value of the self-financing strategy/asset in \in

$$\underbrace{e^{-\rho t}u'(c_t)}_{=\xi_t}Y_t\frac{x_t^A}{Y_t} \text{ follows a martingale}$$
Recall $\mu_t^A - \mu_t^B = \underbrace{(-\sigma_t^{\xi})}_{=\varsigma_t}\underbrace{(\sigma^A - \sigma_t^B)}_{risk}$
 $\mu_t^{A/Y} - \mu_t^{B/Y} = \underbrace{(-\sigma_t^{\xi} - \sigma_t^Y)}_{price of \ risk}\underbrace{(\sigma^A - \sigma_t^Y - \sigma_t^B)}_{risk}$

• Price of risk $\varsigma^{\in} = \varsigma^{\$} - \sigma^{Y}$

Solving MacroModels Step-by-Step

- Postulate aggregates, price processes & obtain return processes 0.
- For given C/N-ratio and SDF processes for each *i* finance block 1.
 - Real investment ι + Goods market clearing *(static)* a.
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - Toolbox 2: "price-taking social planner approach" Fisher separation theorem
 - c. "Money evaluation equation" ϑ
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)
- Value functions 3.
 - Value fcn. as fcn. of individual investment opportunities ω а.
 - Special cases: log-utility, constant investment opportunities
 - b. Separating value fcn. $V^i(n^{\tilde{i}};\eta,K)$ into $v^i(\eta)u(K)(n^{\tilde{i}}/n^i)^{1-\gamma}$
 - Derive C/N-ratio and ς price of risk С.
- Numerical model solution 4.
 - a. Transform BSDE for separated value fcn. $v^{i}(\eta)$ into PDE
 - Solve PDE via value function iteration b.
- KFE: Stationary distribution, Fan charts 5.

forward equation backward equation

2. GE: Markov States and Equilibria

- All agents maximize utility
 - Choose: portfolio, consumption, technology
- All markets clear
 - Consumption, capital, money, outside equity

2. Law of Motion of Wealth Share η_t

- Method 1: Using Ito's quotation rule $\eta_t^i = N_t^i / (q_t K_t)$
 - Recall $\frac{dN_t^i}{N_t^i} = r_t dt + \underbrace{\frac{\chi_t^i \kappa_t^i}{\eta_t^i} (\sigma + \sigma_t^q)}_{risk} \underbrace{\xi_t^i}_{price of} dt + \frac{\chi_t^i \kappa_t^i}{\eta_t^i} (\sigma + \sigma_t^q) dZ_t - \frac{C_t^i}{N_t^i} dt$ risk • $\frac{d\eta_t^i}{n_t^i} = \dots$ (lots of algebra)
- Method 2: Change of numeraire + Martingale Approach
 - New numeraire: Total wealth in the economy, N_t
 - Apply Martingale Approach for value of *i*'s portfolio
 - Simple algebra to obtain drift of $\eta_t^i: \mu_t^{\eta^i}$ Note that change of numeraire does not affect ratio η^i !

2. μ^{η} **Drift of Wealth Share: Many Types**

- New Numeraire
 - "Total net worth" in the economy, N_t (without superscript)
 - Type i's portfolio net worth = net worth share
- Martingale Approach with new numeraire
 - Asset A = i's portfolio return in terms of total wealth,

$$\left(\frac{C_t^i}{N_t^i} + \mu_t^{\eta^i}\right)dt + \sigma_t^{\eta^i}dZ_t + \tilde{\sigma}_t^{n^i}d\tilde{Z}_t$$

Dividend E[capital gains]

vield rate

Asset B (benchmark asset that everyone can hold, e.g. risk-free asset or money (in terms of total economy wide wealth as numeraire)

$$r_t^m dt + \sigma_t^m dZ_t$$

Apply our martingale asset pricing formula $\mu_t^A - \mu_t^B = (\sigma_t^A - \sigma_t^B)$ Poll 28: Is risk-free asset, risk free in the new numeraire? a) Yes No b)

2. μ^{η} **Drift of Wealth Share: Many Types**

Asset pricing formula (relative to benchmark asset)

$$\mu_t^{\eta^i} + \frac{C_t^i}{N_t^i} - r_t^m = \left(\varsigma_t^i - \sigma_t^N\right) \left(\sigma_t^{\eta^i} - \sigma_t^m\right)$$

Add up across types (weighted),

(capital letters without superscripts are aggregates for total economy)

$$\underbrace{\sum_{i'}^{I} \eta_t^{i'} \mu_t^{\eta^{i'}}}_{=0} + \frac{C_t}{N_t} - r_t^m = \sum_{i'} \eta_t^{i'} (\varsigma_t^{i'} - \sigma_t^N) \left(\sigma_t^{\eta^{i'}} - \sigma_t^m\right)$$

Poll 29: Why = 0?

- *a)* Because we have stationary distribution
- b) Because η s sum up to 1
- Because η s follow martingale *C*)

Benchmark asset everyone can trade $\sigma_t^m = -\sigma_t^N$

2. μ^{η} **Drift of Wealth Share: Two Types**

- Asset pricing formula (relative to benchmark asset) $\mu_t^{\eta^i} + \frac{C_t^i}{N_t^i} - r_t^m = \left(\varsigma_t^i - \sigma_t^N\right) \left(\sigma_t^{\eta^i} - \sigma_t^m\right)$
- Add up across types (weighted), (capital letters without superscripts are aggregates for total economy)

$$\underbrace{(\eta_t^e \mu_t^{\eta^e} + \eta_t^h \mu_t^{\eta^h})}_{= \eta_t^e \left(\varsigma_t^e - \sigma_t^N\right) \left(\sigma_t^{\eta^e} - \sigma_t^m\right) + \eta_t^h \left(\varsigma_t^h - \sigma_t^N\right) \left(\sigma_t^{\eta^h} - \sigma_t^m\right)}$$

Subtract from each other yield $\mu_t^{\eta^e} = (1 - \eta_t^e)(\varsigma_t^e - \sigma_t^N) \left(- \sigma_t^m \right) - (1 - \eta_t^e) \left(\varsigma_t^h - \sigma_t^{N^h}\right) \left(\sigma_t^{\eta^h} - \sigma_t^m\right)$ $-\left(\frac{C_t^e}{N_t^e}-\frac{C_t}{a_{\pm}K_{\pm}}\right)$

For benchmark asset: risk-free debt $\sigma_t^m = -\sigma_t^N$

2. σ^η Volatility of Wealth Share

- Recall Ito ratio rule (only volatility term)
- Since $\eta_t = N_t^e / N_t$,

$$\sigma_t^{\eta} = \sigma_t^{N^e} - \sigma_t^N = \sigma_t^{N^i} - \sum_{i'} \eta_t^{i'} \sigma_t^{N^{i'}} = (1 - \eta_t^i) \sigma_t^{N^i} - \sum_{\substack{i^- \neq i \\ \text{Change in notat}}} \eta_t^{i^-} \sigma_t^N$$

Note for

$$\sigma_t^{\eta^e} = (1 - \eta_t^e)(\sigma_t^{n^e} - \sigma_t^{n^h})$$

$$\sigma_t^{n^e} = \underbrace{\chi_t^e / \eta_t^e}_{=\theta^{e,K} + \theta^{e,OE}} (\sigma + \sigma_t^q) \qquad \sigma_t^{n^h} = \frac{\chi_t^h}{\eta_t^h} (\sigma + \sigma_t^q) = \frac{1 - \chi_t^e}{1 - \eta_t^e} (\sigma + \sigma_t^q)$$

Hence,

$$\sigma_t^{\eta^e} = \frac{\chi_t^e - \eta_t^e}{\eta_t^e} \ (\sigma + \sigma_t^q)$$

)

• Note also, $\eta_t^e \sigma_t^{\eta^e} + \eta_t^h \sigma_t^{\eta^h} = 0 \Rightarrow \sigma_t^{\eta^h} = -\frac{\eta_t^e}{\eta_t^h} \sigma_t^{\eta^e} = -\frac{\eta_t^e}{1-\eta_t^e} \sigma_t^{\eta^e}$

i[–]

Change in notation in 2 type setting Type-net worth is $n^i = N^i$

$\binom{q}{t}$

2. σ^{η} Volatility of Wealth Share

- Recall Ito ratio rule (only volatility term): $\sigma_t^{X/Y} = \sigma_t^X \sigma_t^Y$
- Since $\eta_t = N_t^e / N_t$, $N_t = q_t K_t$, by Ito ratio rule (only volatility) term)

$$\sigma_t^{\eta} = \sigma_t^{N^e} - \sigma_t^N = \sigma_t^{N^e} - \sigma_t^q - \sigma_t^q$$

We also have

$$\sigma_t^{N^e} = \frac{\chi_t^e}{\eta_t^e} \left(\sigma + \sigma_t^q \right)$$

Substituting this in previous formula yields

$$\sigma_t^{\eta^e} = \frac{\chi_t^e - \eta_t^e}{\eta_t^e} \ (\sigma + \sigma_t^q)$$

• Note also, $\eta_t^e \sigma_t^{\eta^e} + \eta_t^h \sigma_t^{\eta^h} = 0 \Rightarrow \sigma_t^{\eta^h} = -\frac{\eta_t^e}{n_t^h} \sigma_t^{\eta^e} = -\frac{\eta_t^e}{1-n_t^e} \sigma_t^{\eta^e}$

2. Amplification Formula: Loss Spiral

Recall
$$\sigma_{t}^{\eta^{e}} = \frac{\chi_{t}^{e} - \eta_{t}^{e}}{\eta_{t}^{e}} \quad (\sigma + \sigma_{t}^{q})$$
leverage
By Ito's Lemma on $q(\eta^{e})$

$$\sigma_{t}^{q} = \frac{q'(\eta_{t}^{e})}{q(\eta_{t}^{e})} \eta_{t}^{e} \sigma_{t}^{\eta^{e}}$$

$$\sigma_{t}^{q} = \frac{q'(\eta_{t}^{e})}{\frac{q/\eta_{t}^{e}}{elasticity}} \frac{\chi_{t}^{e} - \eta_{t}^{e}}{\eta_{t}^{e}} (\sigma + \sigma_{t}^{q})$$

Total volatility

$$\sigma + \sigma_t^q = \frac{\sigma}{1 - \frac{q'(\eta_t^e)\chi_t^e - \eta_t^e}{q/\eta_t^e - \eta_t^e}}$$

- Loss spiral
 - Market illiquidity (price impact elasticity)

2. Amplification Formula: Loss Spiral

Recall
$$\sigma_{t}^{\eta^{e}} = \underbrace{\frac{\chi_{t}^{e} - \eta_{t}^{e}}{\eta_{t}^{e}}}_{leverage} (\sigma + \sigma_{t}^{q})$$
Ieverage
By Ito's Lemma on $q(\eta^{e})$

$$\sigma_{t}^{q} = \frac{q'(\eta_{t}^{e})}{q(\eta_{t}^{e})} \eta_{t}^{e} \sigma_{t}^{\eta^{e}}$$

$$\sigma_{t}^{q} = \frac{q'(\eta_{t}^{e})}{\frac{q/\eta_{t}^{e}}{elasticity}} \frac{\chi_{t}^{e} - \eta_{t}^{e}}{\eta_{t}^{e}} (\sigma + \sigma_{t}^{q})$$

Total volatility

$$\sigma + \sigma_t^q = \frac{\sigma}{1 - \frac{q'(\eta_t^e)\chi_t^e - \eta_t^e}{q/\eta_t^e - \eta_t^e}}$$

Poll 34: Where is the spiral?
a) Sum of infinite geometric series (denominator)
b) in q', since with constant price, no spiral

- Loss spiral
 - Market illiquidity (price impact elasticity)

Solving MacroModels Step-by-Step

- Postulate aggregates, price processes & obtain return processes 0.
- For given C/N-ratio and SDF processes for each *i* finance block 1.
 - Real investment ι + Goods market clearing *(static)* a.
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - Toolbox 2: "price-taking social planner approach" Fisher separation theorem
 - c. "Money evaluation equation" ϑ
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- Evolution of state variable η (and K) 2.
- Value functions 3.
 - Value fcn. as fcn. of individual investment opportunities ω а.
 - Special cases: log-utility, constant investment opportunities
 - b. Separating value fcn. $V^i(n^{\tilde{i}};\eta,K)$ into $v^i(\eta)u(K)(n^{\tilde{i}}/n^i)^{1-\gamma}$
 - Derive C/N-ratio and ς price of risk С.
- Numerical model solution 4.
 - a. Transform BSDE for separated value fcn. $v^{i}(\eta)$ into PDE
 - Solve PDE via value function iteration b.
- KFE: Stationary distribution, Fan charts 5.

forward equation backward equation

Solution

Parameters:
$$ho^e = .06,
ho^h = .05, a^e = .11, a^h = .03,$$

 $\delta = .05, \sigma = .01, lpha = .50, \gamma = 2, \phi = 10$

0.8 1

Volatility Paradox

• Comparative Static w.r.t. $\sigma = .01, .05, .1$

Risk Sharing via Outside Equity

• Comparative Static w.r.t. Risk sharing $\alpha = .1, .2, .5$ (skin the game constraint)

Market Liquidity

From $\mu^{\eta^e}(\eta^e) \& \sigma^{\eta^e}(\eta^e)$ to Stationary Distribution

• Drift and Volatility of η^e

Solving MacroModels Step-by-Step

- 0. Postulate aggregates, price processes & obtain return processes
- 1. For given *C*/*N*-ratio and SDF processes for each *i finance block*
 - a. Real investment *ι* + Goods market clearing *(static)*
 - *Toolbox 1:* Martingale Approach, HJB vs. Stochastic Maximum Principle Approach
 - b. Portfolio choice θ + Asset market clearing or Asset allocation κ & risk allocation χ
 - Toolbox 2: "price-taking social planner approach" Fisher separation theorem
 - c. "Money evaluation equation" ϑ
 - Toolbox 3: Change in numeraire to total wealth (including SDF)
- 2. Evolution of state variable η (and K)
- 3. Value functions

5.

- a. Value fcn. as fcn. of individual investment opportunities ω
- Special cases: log-utility, constant investment opportunities
- b. Separating value fcn. $V^i(n^{\tilde{i}};\eta,K)$ into $v^i(\eta)u(K)(n^{\tilde{i}}/n^i)^{1-\gamma}$
- c. Derive C/N-ratio and ς price of risk
- 4. Numerical model solution
 - a. Transform BSDE for separated value fcn. $v^i(\eta)$ into PDE
 - b. Solve PDE via value function iteration

forward equation backward equation

5. Kolmogorov Forward Equation

• Given an initial distribution $f(\eta, 0) = f_0(\eta)$, the density diffusion follows PDE

$$\frac{\partial f(\eta, t)}{\partial t} = \frac{\partial [f(\eta, t)\mu(\eta)]}{\partial \eta} + \frac{1}{2} \frac{\partial^2 [f(\eta, t)\sigma^2(\eta)]}{\partial \eta^2}$$

"Kolmogorov Forward Equation" is in physics referred to as "Fokker-Planck Equation"

• Corollary: if stationary distribution $f(\eta)$ exists, it satisfies the ODE

$$0 = \frac{\partial [f(\eta, t)\mu(\eta)]}{\partial \eta} + \frac{1}{2} \frac{\partial^2 [f(\eta, t)\sigma^2(\eta)]}{\partial \eta^2}$$

5. Stationary Distribution

5. Stationary Distribution

5. Fan chart and distributional impulse response

- In the theory to Bank of England's empirical fan charts
- Starts at η_0 , the median of stationary distribution
- Simulate a shock at 1% quantile of original Brownian shock ($dZ_t = -2.32 dt$) for a period of $\Delta t = 1$.
- Converges back to stationary distribution

5. Fan chart and distributional impulse response

- Starts at stationary distribution
- Simulate a shock at 1% quantile of original Brownian shock $(dZ_t = -2.32 dt)$ for a period of $\Delta t = 1$.
- Converges back to stationary distribution

5. Density Diffusion

- Starts at stationary distribution
- Simulate a shock at 1% quantile of original Brownian shock $(dZ_t = -2.32 dt)$ for a period of $\Delta t = 1$.
- Converges back to stationary distribution

5.Density Diffusion Movies

5. Distributional Impulse Response

- Difference between path with and without shock
- Difference converges to zero in the long-run

 $\sigma = 0.15$