The I Theory of Money

Markus K. Brunnermeier and Yuliy Sannikov Princeton and Stanford University

Baseline Model

consumption and investment

$$\frac{dk_t}{k_t} = (\Phi(\iota_t) - \delta)dt + \underbrace{\sigma dZ_t}_{\text{aggregate}} + \underbrace{\tilde{\sigma} d\tilde{Z}_t}_{\text{idiosyncratic}}$$

- capital produces output a It, has price q
- price of money (infinitely divisible "coin") pK_t
- portfolio weight on money $\theta = p/(p + q)$

Risk and return

consumption and investment

$$\frac{dk_t}{k_t} = (\Phi(\iota_t) - \delta)dt + \underbrace{\sigma dZ_t}_{\text{aggregate}} + \underbrace{\tilde{\sigma} d\tilde{Z}_t}_{\text{idiosyncratic}}$$

- capital produces output a It, has price q
- price of money (infinitely divisible "coin") pK_t
- portfolio weight on money $\theta = p/(p + q)$
- return on capital:

$$\frac{a - \iota_{t}}{q} + \underbrace{(\Phi(\iota_{t}) - \delta)dt + \sigma dZ_{t} + \tilde{\sigma}d\tilde{Z}_{t}}_{\underbrace{\frac{d(qk_{t})}{ak_{t}}}}$$

return on money

$$\underbrace{(\Phi(\iota_t) - \delta)dt + \sigma dZ_t}_{\underbrace{\frac{d(pK_t)}{pK_t}}}$$

Equilibrium

• pricing for log utility $E[dr_A] - E[dr_B] = cov(dr_A - dr_B, dn_t)$

$$\frac{a - \iota_t}{q} = \underbrace{(\sigma - \sigma)}_{\text{diff. in agg. risk}} \sigma + \underbrace{(\tilde{\sigma} - 0)}_{\text{diff. in idios. risk}} (1 - \theta) \tilde{\sigma}$$

- mkt. clearing for log $\rho \frac{q_t}{1-\theta} K_t = \underbrace{(a-\iota_t)K_t}_{\text{total wealth}} = \underbrace{(a-\iota_t)K_t}_{\text{total consumption}}$
- return on capital:

$$\frac{a - \iota_{t}}{q} + \underbrace{(\Phi(\iota_{t}) - \delta)dt + \sigma dZ_{t} + \tilde{\sigma}d\tilde{Z}_{t}}_{\underbrace{\frac{d(qk_{t})}{qk_{t}}}} \qquad 1 - \Theta$$

return on money

$$\underbrace{(\Phi(\iota_t) - \delta)dt + \sigma dZ_t}_{\underbrace{\frac{d(pK_t)}{pK_t}}}$$

portfolio

shares

Equilibrium

• pricing for log utility $E[dr_A] - E[dr_B] = cov(dr_A - dr_B, dn_t)$

$$\frac{a - l_t}{q} = \underbrace{(\sigma - \sigma)}_{\text{diff. in agg. risk}} \sigma + \underbrace{(\tilde{\sigma} - 0)}_{\text{diff. in idios. risk}} (1 - \theta) \tilde{\sigma}$$

- mkt. clearing for log $\rho \frac{q_t}{1-\theta} K_t = \underbrace{(a-\iota_t)K_t}_{\text{total wealth}} = \underbrace{(a-\iota_t)K_t}_{\text{total consumption}}$
- Hence, $\frac{\rho}{1-\theta} = (1-\theta)\tilde{\sigma}^2 \implies \theta = 1 \sqrt{\rho} / \tilde{\sigma}$

money has value only if: $\tilde{\sigma}^2 > \rho$

• Suppose $\Phi(i) = \log(\kappa i + 1)/\kappa$, so $i = (q - 1)/\kappa$

$$a - \iota = \rho \frac{q}{1 - \theta} \Rightarrow q = \frac{a + 1/\kappa}{\rho/(1 - \theta) + 1/\kappa}$$
, declines in θ

Policy / Controlling the Value of Money

suppose policy maker taxes capital, so # of coins follows

$$\frac{dM_t}{M_t} = \mu^M dt + \sigma^M dZ_t$$

- fiscal backing of currency
- more on different types of taxes later...
- If pK_t is the value of all M_t coins held, value of one coin is pK_t/M_t and return on money is

$$\frac{d(pK_t/M_t)}{pK_t/M_t} = \underbrace{(\Phi(\iota_t) - \delta)dt + \sigma dZ_t}_{\underbrace{\frac{d(qk_t)}{qk_t}}} \underbrace{-\mu^M dt - \sigma^M dZ_t}_{\underbrace{-\frac{dM_t}{M_t}}} + \underbrace{\sigma^M (\sigma^M - \sigma)dt}_{\text{Ito term}}$$

Equilibrium with Policy

• # of coins follows $\frac{dM_t}{M_t} = \mu^M dt + \sigma^M dZ_t$

$$\frac{dM_t}{M_t} = \mu^M dt + \sigma^M dZ_t$$

return on money is

$$\frac{d(pK_t/M_t)}{pK_t/M_t} = \underbrace{(\Phi(\iota_t) - \delta)dt + \sigma dZ_t}_{\underbrace{\frac{d(qk_t)}{qk_t}}} \underbrace{-\mu^M dt - \sigma^M dZ_t}_{\underbrace{-\frac{dM_t}{M_t}}} + \underbrace{\sigma^M (\sigma^M - \sigma)dt}_{\text{Ito term}}$$

return on portfolio of capital and money

$$\underbrace{\rho \, dt}_{\text{dividend yield}} + (\Phi(\iota_t) - \delta) \, dt + \sigma dZ_t + (1 - \theta) \tilde{\sigma} d\tilde{Z}_t$$

$$\underbrace{\text{dividend yield}}_{\text{(cons. mkt clearing)}}$$

• pricing $E[dr_A] - E[dr_B] = cov(dr_A - dr_B, dn_t)$

$$\rho + \mu^{M} - \sigma^{M}(\sigma^{M} - \sigma) = \underbrace{(\sigma - \sigma + \sigma^{M})}_{\text{diff. in agg. risk}} \sigma + \underbrace{((1 - \theta)\tilde{\sigma} - 0)}_{\text{diff. in idios. risk}} (1 - \theta)\tilde{\sigma}$$

Policy and Money Value

- # of coins follows $\frac{dM_t}{M_t} = \mu^M dt + \sigma^M dZ_t$
- money value $\rho + \mu^M (\sigma^M)^2 = (1 \theta)^2 \tilde{\sigma}^2$
- 1. Money value increases in fiscal backing (when $\mu^{M} < 0$).
- 2. Planner can make money risk-free by setting $\sigma^{M} = \sigma$. Then θ goes up further.
- 3. Price level follows

$$\frac{d(M_t/(pK_t))}{M_t/(pK_t)} = \mu^M dt + \sigma^M dZ_t - (\Phi(\iota_t) - \delta)dt - \sigma dZ_t + \sigma(\sigma - \sigma^M)dt$$

4. Planner can create inflation by paying interest on money, so

$$\frac{dM_t}{M_t} = \mu^M dt + \sigma^M dZ_t + i dt$$

Remarks

- Taxes / transfers
- 1) proportionately to money holdings: i
- 2) proportionately to capital holdings: $\mu^{M}dt + \sigma^{M}dZ_{t}$
- 3) proportionately to net worth
- 4) per capita

Remarks

- Taxes / transfers
- 1) proportionately to money holdings: i
 - no real effect, affects price level
- 2) proportionately to capital holdings: $\mu^{M}dt + \sigma^{M}dZ_{t}$
 - μ^M pushes down money return
 - capital return goes up
 - pushes people to hold less money, invest more
- 3) proportionately to net worth
 - only transfers to capital matter, effect less by 1 θ
- 4) per capita
 - no real effect people simply borrow against the transfers they expect to receive

Model with Intermediaries

$$\frac{dk_t}{k_t} = (\Phi(\iota_t) - \delta)dt + \underbrace{\sigma dZ_t}_{\text{aggregate}} + \underbrace{\tilde{\sigma} d\tilde{Z}_t}_{\text{idiosyncratic}}$$

- Intermediaries can hold equity share up to $\bar{\chi}$
- can diversify some idiosyncratic risk, reduce it to $\phi \tilde{\sigma}$
- Intermediaries' wealth share $\eta_t = N_t / ((p_t + q_t)K_t)$
- No policy: risk of capital $\sigma + \sigma^q$, money $\sigma + \sigma^p$, incremental risk of capital $(\theta = p/(p + q))$

$$\sigma_t^q - \sigma_t^p = -\frac{\sigma^\theta}{1 - \theta}$$

• Policy: risk of money $\sigma + \sigma^p - \sigma^M$, capital, $\sigma + \sigma^q + \theta \sigma^M/(1-\theta)$, incremental $\frac{-\sigma^\theta + \sigma^M}{1-\sigma}$

Allocation

- Minimize weighted average cost of financing
- Price of risk = volatility of wealth. Can use any numeraire, e.g. world wealth

price of aggregate risk:
$$\sigma_t^{\eta}$$
, $\frac{-\eta \sigma_t^{\eta}}{1-\eta}$

price of idiosyncratic risk:
$$(1-\theta)\frac{\chi_t\phi\tilde{\sigma}}{\eta_t}$$
 $(1-\theta)\frac{(1-\chi_t)\tilde{\sigma}}{1-\eta_t}$ intermediaries

FOC (equality if $\chi = \overline{\chi}$)

$$\frac{-\sigma^{\theta} + \sigma^{M}}{1 - \theta} \quad \sigma_{t}^{\eta} + \phi \tilde{\sigma} (1 - \theta) \frac{\chi_{t} \phi \tilde{\sigma}}{\eta_{t}} \leq \frac{-\sigma^{\theta} + \sigma^{M}}{1 - \theta} \quad \frac{(-\eta \sigma_{t}^{\eta})}{1 - \eta} + \tilde{\sigma} (1 - \theta) \frac{(1 - \chi_{t}) \tilde{\sigma}}{1 - \eta_{t}}$$
remental aggregate risk

Risk of η and amplification

- σ^η is the risk of intermediaries' wealth, with world wealth as numeraire
- In this numeraire the risk of money is σ^{θ} without policy... $\sigma^{\theta} \sigma^{M}$ with policy
- Then

$$\sigma_{t}^{\eta} = \sigma^{\theta} - \sigma^{M} + \underbrace{\frac{(1-\theta)\chi}{\eta}}_{\text{capital portfolio weight incremental risk of capital}}^{-\sigma^{\theta} + \sigma^{M}}_{\text{capital portfolio weight incremental risk of capital}} = \frac{\chi - \eta}{\eta} \left(-\underbrace{\sigma^{\theta}_{t}(\eta)}_{\theta(\eta)} + \sigma^{M} \right)$$

$$\Rightarrow \eta \sigma_{t}^{\eta} = \frac{(\chi - \eta)\sigma^{M}}{1 + (\chi - \eta)\frac{\theta'(\eta)}{\theta(\eta)}}$$

- Without policy $\sigma^{\eta} = 0$. Otherwise (e.g. if policy maker wants money to be risk-free), σ^{M} is amplified...
- We'll see the shape of θ in a moment...

Capital allocation

- Suppose $\sigma^{M} = 0$, so σ^{η} , $\sigma^{\theta} = 0$
- Then χ is given by the FOC

$$\phi \tilde{\sigma}(1-\theta) \frac{\chi_t \phi \tilde{\sigma}}{\eta_t} \leq \tilde{\sigma}(1-\theta) \frac{(1-\chi_t)\tilde{\sigma}}{1-\eta_t} \Rightarrow \chi = \min\left(\frac{\eta}{\eta + (1-\eta)\phi^2}, \bar{\chi}\right)$$

Money return

Return on money w/o policy (numeraire = world wealth)

$$\frac{d\theta_t}{\theta_t} = \mu_t^{\theta} dt + \sigma_t^{\theta} dZ_t$$

W/ policy (outside money is M_t coins), one coin is θ_t/M_t of world wealth, money return is

$$\frac{d(\theta_t/M_t)}{(\theta_t/M_t)} = \mu_t^{\theta} dt + \sigma_t^{\theta} dZ_t - \mu_t^{M} dt - \sigma_t^{M} dZ_t + \sigma_t^{M} (\sigma_t^{M} - \sigma_t^{\theta}) dt = \mu_t^{\hbar} dt + \sigma_t^{\hbar} dZ_t$$

Next, the law of motion of η and money valuation...

Pricing individuals' portfolios

$$E[dr_A] - E[dr_B] = \operatorname{cov}(dr_A - dr_B, dn_t)$$

- Holds regardless of numeraire. Let's use global wealth
- Suppose ηⁱ is wealth share of some agent group i. Asset A: their portfolio, B: money

$$\mu_t^{\eta,i} + \rho^i - \mu_t^{\hbar} = (\sigma_t^{\eta,i} - \sigma_t^{\hbar})\sigma_t^{\eta,i} + (\tilde{\sigma}_t^i)^2$$

drift and volatility of various variables, as in idiosyncratic risk exposure

idiosyncratic risk exposure in group i

where
$$\frac{d\eta^{i}}{\eta^{i}} = \mu_{t}^{\eta,i}dt + \sigma_{t}^{\eta,i}dZ_{t}$$

Money valuation equation

$$\mu_t^{\eta,i} + \rho^i - \mu_t^{\hbar} = (\sigma_t^{\eta,i} - \sigma_t^{\hbar})\sigma_t^{\eta,i} + (\tilde{\sigma}_t^i)^2$$

Add across agents with weights ηⁱ

$$\sum_{i} \eta^{i} \mu_{t}^{\eta,i} + \sum_{i} \eta^{i} \rho^{i} - \mu_{t}^{\hbar} = \sum_{i} \eta^{i} (\sigma_{t}^{\eta,i})^{2} - \sigma_{t}^{\hbar} \sum_{i} \eta^{i} \sigma_{t}^{\eta,i} + \sum_{i} \eta^{i} (\tilde{\sigma}_{t}^{i})^{2}$$

$$\Rightarrow \sum_{i} \eta^{i} \rho^{i} - \underbrace{\left(\mu_{t}^{\theta} - \mu_{t}^{M} + \sigma_{t}^{M} (\sigma_{t}^{M} - \sigma_{t}^{\theta})\right)}_{\mu_{t}^{h}} = \sum_{i} \eta^{i} \left(\left(\sigma_{t}^{\eta,i}\right)^{2} + \left(\tilde{\sigma}_{t}^{i}\right)^{2}\right)$$

- This generalizes $\rho + \mu^M (\sigma^M)^2 = (1 \theta)^2 \tilde{\sigma}^2$ (baseline model)
- Average risk exposure > ave. discount rate when money is depreciating
- Planner can attain any function $\theta(\eta)$ and any risk of money (by choosing μ^M that satisfies the money value equation)

Law of motion of wealth shares

$$\mu_t^{\eta,i} + \rho^i - \mu_t^{\hbar} = (\sigma_t^{\eta,i} - \sigma_t^{\hbar})\sigma_t^{\eta,i} + (\tilde{\sigma}_t^i)^2$$

Subtract money valuation

$$\sum_{i} \eta^{i} \rho^{i} - \mu_{t}^{\hbar} = \sum_{i} \eta^{i} \left((\sigma_{t}^{\eta,i})^{2} + (\tilde{\sigma}_{t}^{i})^{2} \right)$$

$$\mu_{t}^{\eta,i} = (\sigma_{t}^{\eta,i} - \sigma_{t}^{\hbar})\sigma_{t}^{\eta,i} + (\tilde{\sigma}_{t}^{i})^{2} - \sum_{j} \eta^{j} \rho^{j} - \sum_{j} \eta^{j} \left((\sigma_{t}^{\eta,j})^{2} + (\tilde{\sigma}_{t}^{j})^{2} \right) - \rho^{i}$$

- Drift of η determined by
 - consumption rate of group i relative to others
 - risk exposure (agg. + idiosyncratic) of group i relative to others
 - covariance of the risk of group i and money

Let's apply this to our model

$$\sigma^{\eta} = 0, \quad \tilde{\sigma}^{I} = (1 - \theta) \frac{\chi \phi \tilde{\sigma}}{\eta}, \quad \tilde{\sigma}^{H} = (1 - \theta) \frac{(1 - \chi) \tilde{\sigma}}{1 - \eta}$$

$$\mu_t^{\eta} = (\tilde{\sigma}_t^I)^2 - \eta(\tilde{\sigma}_t^I)^2 - (1 - \eta)(\tilde{\sigma}_t^H)^2 = (1 - \eta)(1 - \theta)^2 \left(\frac{\chi^2 \phi^2}{\eta^2} - \frac{(1 - \chi)^2}{(1 - \eta)^2}\right) \tilde{\sigma}^2$$

$$\rho - \mu_{t}^{\theta} = (1 - \theta)^{2} \left(\eta \frac{\chi^{2} \phi^{2}}{\eta^{2}} + (1 - \eta) \frac{(1 - \chi)^{2}}{(1 - \eta)^{2}} \right) \tilde{\sigma}^{2}$$

$$\eta(\tilde{\sigma}_{t}^{I})^{2} + (1 - \eta)(\tilde{\sigma}_{t}^{H})^{2}$$
where $\chi = \min \left(\frac{\eta}{\eta + (1 - \eta)\phi^{2}}, \overline{\chi} \right)$

θ minimized when $\mu^{\eta} = 0$

$$\sigma^{\eta} = 0, \quad \tilde{\sigma}^{I} = (1 - \theta) \frac{\chi \phi \tilde{\sigma}}{\eta}, \quad \tilde{\sigma}^{H} = (1 - \theta) \frac{(1 - \chi)\tilde{\sigma}}{1 - \eta}$$

$$\mu_{t}^{\eta} = (\tilde{\sigma}_{t}^{I})^{2} - \eta(\tilde{\sigma}_{t}^{I})^{2} - (1 - \eta)(\tilde{\sigma}_{t}^{H})^{2} = (1 - \eta)(1 - \theta)^{2} \left(\frac{\chi^{2}\phi^{2}}{\eta^{2}} - \frac{(1 - \chi)^{2}}{(1 - \eta)^{2}}\right)\tilde{\sigma}^{2}$$

$$\rho - \mu_{t}^{\theta} = (1 - \theta)^{2} \left(\eta \frac{\chi^{2}\phi^{2}}{\eta^{2}} + (1 - \eta)\frac{(1 - \chi)^{2}}{(1 - \eta)^{2}}\right)\tilde{\sigma}^{2}$$

$$\psi \text{here } \chi = \min\left(\frac{\eta}{\eta + (1 - \eta)\phi^{2}}, \overline{\chi}\right)$$

 Ave. idiosyncratic risk exposure (before the effect of money) is minimized at the steady state of η

Example

$$\rho = 0.05, \kappa = 2, \tilde{\sigma} = 0.5, \phi = 0.4, \bar{\chi} = 0.8$$

Aggregate risk on I's balance sheets

- I get exposed to aggregate risk if their investments ≠ average in the economy, i.e. they specialize
- Easiest way to capture this: assume that fraction $\bar{\psi}$ of capital has to be in technology b and $1-\bar{\psi}$ in a
- I can invest only in technology b, diversify idios. risk to $\phi \tilde{\sigma}$

$$\frac{dk_{t}}{k_{t}} = (\Phi(\iota_{t}) - \delta)dt + \underbrace{\tilde{\sigma}d\tilde{Z}_{t}}_{\text{idiosyncratic}} \qquad \underbrace{\frac{dk_{t}}{k_{t}}}_{\text{technology a}} = (\Phi(\iota_{t}) - \delta)dt + \underbrace{\tilde{\sigma}d\tilde{Z}_{t}}_{\text{aggregate}} + \underbrace{\tilde{\sigma}d\tilde{Z}_{t}}_{\text{idiosyncratic}}$$

- Fundamental risk of money / economy: $ar{\psi}\sigma$
- Incremental risk of technologies a and b

$$-\bar{\psi}\sigma + \frac{-\sigma^{\theta} + \sigma^{M}}{1 - \theta}, \qquad (1 - \bar{\psi})\sigma + \frac{-\sigma^{\theta} + \sigma^{M}}{1 - \theta}$$

Allocation

Minimize weighted average cost of financing

$$\left((1-\overline{\psi})\sigma - \frac{\sigma^{\theta} - \sigma^{M}}{1-\theta}\right)\sigma_{t}^{\eta} + \phi\tilde{\sigma}(1-\theta)\frac{\psi\phi\tilde{\sigma}}{\eta} \leq \left((1-\overline{\psi})\sigma - \frac{\sigma^{\theta} - \sigma^{M}}{1-\theta}\right)\frac{(-\eta\sigma_{t}^{\eta})}{1-\eta} + \tilde{\sigma}(1-\theta)\frac{(1-\psi)\tilde{\sigma}}{1-\eta}$$

(equality if $\chi = \overline{\chi}$)

$$\sigma_{t}^{\eta} = \sigma^{\theta} - \sigma^{M} + \underbrace{\frac{(1-\theta)\psi}{\eta}}_{\text{capital portfolio weight}} \underbrace{\left((1-\overline{\psi})\sigma - \frac{\sigma^{\theta} - \sigma^{M}}{1-\theta}\right)}_{\text{incremental risk of capital}} \Rightarrow$$

$$\eta \sigma_{t}^{\eta} = \frac{(1-\theta)\psi(1-\overline{\psi})\sigma + (\psi-\eta)\sigma^{M}}{1+(\psi-\eta)\frac{\theta'(\eta)}{\theta(\eta)}} \qquad \left(=(1-\theta)\psi(1-\overline{\psi})\sigma \text{ if } \sigma^{M} = \sigma^{\theta}\right)$$

policy removes endogenous risk / amplification

Law of motion of η and money valuation

Money valuation

$$\rho - \mu_t^{\hbar} = \eta \left((\sigma_t^{\eta})^2 + (\tilde{\sigma}_t^I)^2 \right) + (1 - \eta) \left(\left(\frac{\eta \sigma_t^{\eta}}{1 - \eta} \right)^2 + (\tilde{\sigma}_t^H)^2 \right)$$

$$\mu_t^{\eta} = (1 - \eta) \left((\sigma_t^{\eta})^2 + (\tilde{\sigma}_t^I)^2 - \left(\frac{\eta \sigma_t^{\eta}}{1 - \eta} \right)^2 - (\tilde{\sigma}_t^H)^2 \right) - \sigma_t^{\eta} \underbrace{\sigma_t^{\eta}}_{\sigma^{\theta} - \sigma^M}$$

If the policy removes endogenous risk...

$$\psi = \min \left(\frac{\eta}{\eta + (1 - \eta)\phi^2 + (1 - \overline{\psi})^2 \sigma^2 / \tilde{\sigma}^2}, \overline{\psi} \right)$$
 closed form

$$\sigma^{\eta} = (1 - \theta) \frac{\psi}{\eta} (1 - \overline{\psi}) \sigma \leftarrow \text{closed form up to } \theta \text{ (choice of planner)}$$

$$\eta \mu_t^{\eta} = \eta (1 - \eta) (1 - \theta)^2 \left(\frac{1 - 2\eta}{(1 - \eta)^2} \frac{\psi^2}{\eta^2} (1 - \overline{\psi})^2 \sigma^2 + \frac{\psi^2 \phi^2 \tilde{\sigma}^2}{\eta^2} - \frac{(1 - \psi)^2 \tilde{\sigma}^2}{(1 - \eta)^2} \right)$$

$$\psi = \frac{\eta}{(1 - \overline{\psi})^2 \sigma^2 / \tilde{\sigma}^2 + \phi^2 (1 - \eta) + \eta}$$

Example
$$\rho = 0.05, \kappa = 2, \tilde{\sigma} = 0.5, \phi = 0.4, \bar{\chi} = 0.8, \sigma = 0.1$$

policy: $\mu^M = 0$, $\sigma^M = \sigma^{\theta^{\eta}}$

Example $\rho = 0.05, \kappa = 2, \tilde{\sigma} = 0.5, \phi = 0.4, \bar{\psi} = 0.8, \sigma = 0.1$

Optimal Policy?

- Generally hard question: need a precise definition of the policy space / analytical tools to characterize the optimum
- One side: inefficiencies / tradeoffs
 - insurance vs. investment
 - allocation of assets / risk
- Other side: policy space
 - (1) controlling money growth rate
 - (2) macroprudential tools / wealth redistribution
 - (3) risk redistribution
- Many moving parts, but we can get clear answers in some simple settings

Optimal policy? Welfare with log utility:

• Class of models: price capital q_t , value of money p_tK_t , two types of agents I and H, have wealth shares η_t and $1-\eta_t$, idiosyncratic risk exposures

$$\tilde{\sigma}_t^I$$
 and $\tilde{\sigma}_t^H$

Then the welfare of I is (similar formula for H)

$$E\left[\int_{0}^{\infty} e^{-\rho t} \log(c_{t}^{I}) dt\right] = E\left[\int_{0}^{\infty} e^{-\rho t} \log(\eta_{t}(a(\psi_{t}) - \iota_{t}) K_{t} \tilde{\eta}_{t}^{I}) dt\right],$$
$$\tilde{\eta}_{0}^{I} = 1, \quad \frac{d\tilde{\eta}_{t}^{I}}{\tilde{\eta}_{t}^{I}} = \tilde{\sigma}_{t}^{I} d\tilde{Z}_{t}$$

Welfare with log utility

The welfare of I is

$$E\left[\int_{0}^{\infty} e^{-\rho t} \log(\eta_{t}(a(\psi_{t}) - \iota_{t})K_{t}\tilde{\eta}_{t})dt\right] = E\left[\int_{0}^{\infty} e^{-\rho t} \log \eta_{t} dt\right] + \frac{\log \eta_{0}}{\rho} + E\left[\int_{0}^{\infty} e^{-\rho t} \log(a(\psi_{t}) - \iota_{t})dt\right] + E\left[\int_{0}^{\infty} e^{-\rho t} \log K_{t} dt\right] + E\left[\int_{0}^{\infty} e^{-\rho t} \log K_{t} dt\right] + E\left[\int_{0}^{\infty} e^{-\rho t} \log \tilde{\eta}_{t} dt\right] + E\left[\int_{0}^{\infty} e^{-\rho t} \log \tilde{\eta}_{t} dt\right] + E\left[\int_{0}^{\infty} e^{-\rho t} \log \tilde{\eta}_{t} dt\right]$$

$$\tilde{\eta}_{0}^{I} = 1, \quad \frac{d\tilde{\eta}_{t}^{I}}{\tilde{\eta}_{t}^{I}} = \tilde{\sigma}_{t}^{I} d\tilde{Z}_{t}$$

Welfare

We see that policy can affect welfare in several ways

$$E\left[\int_{0}^{\infty} e^{-\rho t} \log \eta_{t} dt\right] + E\left[\int_{0}^{\infty} e^{-\rho t} \log(a(\psi_{t}) - \iota_{t}) dt\right] + E\left[\int_{0}^{\infty} e^{-\rho t} \left(\frac{\Phi(\iota_{t}) - \delta}{\rho} - \frac{|\sigma_{t}^{K}|^{2}}{2\rho}\right) dt\right] - E\left[\int_{0}^{\infty} e^{-\rho t} \left(\frac{\tilde{\sigma}_{t}^{I}}{2\rho}\right)^{2} dt\right]$$

- investment vs. consumption
- allocation of capital idiosyncratic risk, total output
- η the distribution of consumption and risk absorption capacity

One at a time: policy tools and equilibrium features

- Generally, idiosyncratic risk exposures $\tilde{\sigma}_t^I$ and $\tilde{\sigma}_t^H$ are stochastic (depend on η , risk absorption capacity, allocation)
- If intermediaries help reduce idiosyncratic risk, these may rise when η declines (or goes away from the middle)
- Let's see, how this matters with a simple model

Stochastic idiosyncratic risk

 One type of agents H, idiosyncratic risk of capital is stochastic (hence it is a state variable)

$$d\tilde{\sigma}_{t} = \tilde{\mu}(\tilde{\sigma}_{t})dt + \tilde{v}(\tilde{\sigma}_{t})dZ_{t}$$

e.g. as in Di Tella, CIR process

$$d\tilde{\sigma}_{t} = \lambda(\bar{\sigma} - \tilde{\sigma}_{t})dt + v\sqrt{\tilde{\sigma}_{t}}dZ_{t}$$

- Global wealth as numeraire, agents' entire portfolio has return ρ (just the consumption rate)
- Money has return

$$\mu_t^{\theta} dt + \sigma_t^{\theta} dZ_t - \mu_t^{M} dt$$

rate of money printing, which is distributed to capital

Stochastic idiosyncratic risk

Global wealth as numeraire, wealth has return ρ
Money has return

$$\mu_t^{\theta} dt + \sigma_t^{\theta} dZ_t - \mu_t^{M} dt$$

Money valuation equation

$$\rho - (\mu_t^{\theta} - \mu_t^{M}) = \underbrace{(1 - \theta_t)\tilde{\sigma}_t}_{\text{idiosync. risk of wealth price of idiosync. risk}} \underbrace{(1 - \theta_t)\tilde{\sigma}_t}_{\text{agg. risk of wealth price of idiosync. risk}} \underbrace{-\sigma_t^{\theta}}_{\text{agg. risk of wealth rel. to money}} \underbrace{0}_{\text{price of agg. risk of wealth rel. to money}}$$

Without policy, equation

$$\rho - \mu_t^{\theta} = (1 - \theta_t)^2 \tilde{\sigma}_t^2$$

has a unique solution in $\vartheta(\tilde{\sigma}_t) \in (0,1)$ (if idiosyncratic risk is sufficiently large)

Optimal Policy

Market-clearing for output

$$a - \iota(q) = \rho \frac{q}{1 - \theta}, \text{ if } \Phi(\iota) = \frac{\log(\kappa \iota + 1)}{\kappa}, \iota(q) = \frac{q - 1}{\kappa}, \quad q = \frac{(a\kappa + 1)(1 - \theta)}{\rho\kappa + 1 - \theta}$$

• welfare is $\frac{\log K_0}{\rho} - \frac{\delta}{\rho^2} +$

$$E\left[\int_{0}^{\infty} e^{-\rho t} \log(a - \iota_{t}) dt\right] + E\left[\int_{0}^{\infty} e^{-\rho t} \frac{\Phi(\iota_{t})}{\rho} dt\right] - E\left[\int_{0}^{\infty} e^{-\rho t} \frac{(1 - \theta_{t})^{2} \tilde{\sigma}_{t}^{2}}{2\rho} dt\right]$$

$$E\left[\int_{0}^{\infty} e^{-\rho t} \log\left(\rho \frac{a\kappa + 1}{\rho\kappa + 1 - \theta_{t}}\right) dt\right] - \frac{1}{\rho\kappa} E\left[\int_{0}^{\infty} e^{-\rho t} \log\left(\frac{(a\kappa + 1)(1 - \theta_{t})}{\rho\kappa + 1 - \theta_{t}}\right) dt\right]$$

• let $\vartheta^*(\tilde{\sigma}^2)$ be the maximizer of (optimal baseline policy)

$$\frac{1}{\rho\kappa}\log(1-\theta) - \frac{\rho\kappa + 1}{\rho\kappa}\log(\rho\kappa + 1 - \theta) - \frac{(1-\theta)^2\tilde{\sigma}^2}{2\rho}$$

Optimal policy

- If the planner could control θ_t directly, she would set $\theta_t = \vartheta^*(\tilde{\sigma}_t^2)$
- Controlling indirectly by choosing μ_t^M the planner can achieve any function including $\vartheta^*(\tilde{\sigma}_t^2)$ by solving

$$\rho - (\mu_t^{\theta} - \mu_t^{M}) = (1 - \theta_t)^2 \tilde{\sigma}_t^2$$

for μ_t^M

- Optimal policy is easier to find than even the equilibrium outcome (differentiation vs. integration)
- Risk-free rate $\Phi(\iota_t) \delta + \mu_t^\theta \mu_t^M = \rho (1 \theta_t)^2 \tilde{\sigma}_t^2 + \Phi(\iota_t) \delta$ declines as $\tilde{\sigma}_t^2$ increases
- Nice relationship b/w baseline and dynamic model

• The relationship between idiosyncratic risk level $\tilde{\sigma}_t$ and optimal insurance $\vartheta^*(\tilde{\sigma}_t^2)$ pops up everywhere

 Let's consider another model, with heterogeneous agents but with exogenous wealth distribution

Switching types

Policy maker can choose the money growth rate μ_t^M

Remarks

- Policy-maker cannot affect the wealth shares (exogenously fixed by the switching process)
- Welfare weights on intermediaries and households are η and 1 – η from the setup
- Optimal monetary (with or w/o macroprudential policy – controlling capital allocation)

Equilibrium capital allocation

- Fraction ψ of capital is held by the intermediaries
- Capital allocation must be such that

$$\frac{\phi \tilde{\sigma}}{\text{idiosync. risk of I}} = \underbrace{\frac{(1-\theta)\psi\phi\tilde{\sigma}}{\eta}}_{\text{I's price of idiosync. risk}} = \underbrace{\tilde{\sigma}}_{\text{idiosync. risk of H}} \underbrace{\frac{(1-\theta)(1-\psi)\tilde{\sigma}}{1-\eta}}_{\text{H's price of idiosync. risk}}$$

$$\Rightarrow \psi = \frac{\eta}{\phi^2 (1 - \eta) + \eta}$$

Policy maker may try to affect ψ...

Welfare

• Law of large numbers: switching risk does not matter. Everyone's wealth growth averages out to $\Phi(\iota_t) - \delta$ and idiosyncratic risk exposure, to

$$\eta(\tilde{\sigma}^{I})^{2} + (1 - \eta)(\tilde{\sigma}^{H})^{2} = (1 - \theta)^{2} \tilde{\sigma}^{2} \left(\frac{\psi^{2} \phi^{2}}{\eta} + \frac{(1 - \psi)^{2}}{1 - \eta} \right)$$

$$\tilde{\sigma}^{I} = \frac{(1-\theta)\psi\phi\tilde{\sigma}}{\eta}, \quad \tilde{\sigma}^{H} = \frac{(1-\theta)(1-\psi)\tilde{\sigma}}{1-\eta}$$

Welfare

$$E\left[\int_{0}^{\infty} e^{-\rho t} \log(a - \iota(\theta)) dt\right] + E\left[\int_{0}^{\infty} e^{-\rho t} \frac{\Phi(\iota(\theta)) - \delta}{\rho} dt\right] - E\left[\int_{0}^{\infty} e^{-\rho t} \frac{(1 - \theta)^{2} (\tilde{\sigma}^{A})^{2}}{2\rho} dt\right]$$

• Given $\tilde{\sigma}^A$, optimal to set $\theta = \vartheta^*((\tilde{\sigma}^A)^2)$

Money valuation

$$\rho - (\mu_t^{\theta} - \mu_t^{M}) = \underbrace{\eta(\tilde{\sigma}^I)^2 + (1 - \eta)(\tilde{\sigma}^H)^2}_{(1 - \theta)^2(\tilde{\sigma}^A)^2}$$

Without policy,

$$\rho = (1 - \theta)^2 (\tilde{\sigma}^A)^2$$

Macroprudential tools

Average idiosyncratic risk of capital

$$(\tilde{\sigma}^A)^2 = \tilde{\sigma}^2 \left(\frac{\psi^2 \phi^2}{\eta} + \frac{(1 - \psi)^2}{1 - \eta} \right)$$

is minimized when

$$\frac{\psi\phi^2}{\eta} = \frac{1-\psi}{1-\eta} \Rightarrow \psi = \frac{\eta}{\phi^2(1-\eta)+\eta}$$

This is the equilibrium allocation! Optimal not to use macroprudential tools.

Remarks

- Same trade-off between insurance and investment
- Equilibrium allocation is efficient, minimizes the cost of risk exposure
- Policy space (1) money growth and (1) + (2) (also macroprudential tools) leads to the same outcome

Endogenous law of motion of η

- Wealth distribution can change endogenously with (i) risk exposure of intermediaries and households (ii) risk premia (iii) consumption rates
- Consider the following model

Fixed types (no switching)

	intermediaries	households	types fixed (no switching)
wealth shares	η	1-η	
welfare weights	λ	1-λ	You have already seen this model
idiosyncratic risk of capital	$\phi \tilde{\sigma}, \phi \in (0,1)$	$ ilde{\sigma}$	except here $\bar{\psi} = 1$
aggregate risk	σ	σ	
output per unit of capital	the same, independently of the allocation		

Two policy classes:

- (1) choose the money growth rate μ_t^M
- (1) + (2) also choose allocation (macroprudential) and transfer wealth between groups (why / how?)

Welfare of I and H

Intermediaries (weight λ)

$$E\left[\int_{0}^{\infty} e^{-\rho t} \left(\log \eta_{t} + \log(a - \iota_{t}) + \frac{\Phi(\iota_{t}) - \delta}{\rho} - \frac{\sigma^{2}}{2\rho} - \frac{(1 - \theta_{t})^{2}}{2\rho} \frac{\psi^{2} \phi^{2} \tilde{\sigma}^{2}}{\eta^{2}}\right) dt\right]$$

households (weight 1 – λ)

$$E\left[\int_{0}^{\infty} e^{-\rho t} \left(\log(1-\eta_{t}) + \log(a-\iota_{t}) + \frac{\Phi(\iota_{t}) - \delta}{\rho} - \frac{\sigma^{2}}{2\rho} - \frac{(1-\theta)^{2}}{2\rho} \frac{(1-\psi)^{2}\tilde{\sigma}^{2}}{(1-\eta)^{2}}\right) dt\right]$$

Optimal policy, (1) + (2)

Planner chooses θ, ψ and η to maximize the disc. integral of

$$\lambda \log \eta_t + (1-\lambda) \log (1-\eta_t) + \log (a-\iota(\theta)) + \frac{\Phi(\iota(\theta)) - \delta}{\rho} - \frac{\sigma^2}{2\rho}$$

$$-\frac{(1-\theta)^2 \tilde{\sigma}^2}{2\rho} \left(\lambda \frac{\psi^2 \phi^2}{\eta^2} + (1-\lambda) \frac{(1-\psi)^2}{(1-\eta)^2} \right) \qquad \text{not the competitive allocation (unless $\eta = \lambda$)}$$

$$\frac{\lambda (1-\lambda) \phi^2}{\lambda \phi^2 (1-\eta)^2 + (1-\lambda) \eta^2}, \qquad \text{given the optimal choice of $\psi = \frac{(1-\lambda) \eta^2}{\lambda \phi^2 (1-\eta)^2 + (1-\lambda) \eta^2}$}$$

given ψ and η, optimal to set θ to

$$\theta = \theta^* \left(\tilde{\sigma}^2 \frac{\lambda (1 - \lambda) \phi^2}{\lambda \phi^2 (1 - \eta)^2 + (1 - \lambda) \eta^2} \right)$$

welfers weighted everges risk exposure

welfare weighted average risk exposure

Competitive ψ vs. minimizing cost of risk

Optimal policy, (1) + (2)

Finally, optimal η (given ϑ) – let's look at terms containing η

$$\max_{\eta} \underbrace{\frac{\lambda \log \eta + (1 - \lambda) \log (1 - \eta)}{\text{concave, max at } \eta = \lambda, \text{ goes to } -\infty \text{ at } 0 \text{ and } 1} - \frac{(1 - \vartheta)^2 \tilde{\sigma}^2}{2\rho} \underbrace{\frac{\lambda (1 - \lambda) \phi^2}{\lambda \phi^2 (1 - \eta)^2 + (1 - \lambda) \eta^2}}_{\text{concave (!) also, max at } \frac{\lambda \phi^2}{\lambda \phi^2 + 1 - \lambda} < \lambda}$$

- hence, it is optimal to set $\eta > \lambda$ (unfortunately I could not get a closed-form expression for the optimal η)
- push more risk to intermediaries than they'd take under competitive outcome
- relative to previous infinite switching model
 - it is optimal to give intermediaries more wealth, because they are more efficient at absorbing risk
 - overall risk is reduced and the value of money is lower (more intermediation)

Optimizing over η $\rho = 0.05, \kappa = 2, \tilde{\sigma} = 0.3, \phi = 0.5, \lambda = 0.2$

$$\rho = 0.05, \kappa = 2, \tilde{\sigma} = 0.3, \phi = 0.5, \lambda = 0.2$$

Optimal policy, (1) only

- What about monetary policy alone?
- Planner cannot alter the comp. allocation, $\psi = \frac{\eta}{\phi^2(1-\eta) + \eta}$
- · Welfare is the disc. integral of

$$\lambda \log \eta + (1 - \lambda) \log(1 - \eta) + \log(a - \iota(\theta)) + \frac{\Phi(\iota(\theta)) - \delta}{\rho} - \frac{\sigma^2}{2\rho}$$

$$-\frac{(1-\theta)^{2}\tilde{\sigma}^{2}}{2\rho}\left[\lambda\frac{\psi^{2}\phi^{2}}{\eta^{2}}+(1-\lambda)\frac{(1-\psi)^{2}}{(1-\eta)^{2}}\right]$$

$$\frac{\lambda\phi^{2}+(1-\lambda)\phi^{4}}{(\phi^{2}(1-\eta)+\eta)^{2}}$$

• s.t.

$$\frac{d\eta}{\eta} = (1 - \eta)((\tilde{\sigma}_t^I)^2 - (\tilde{\sigma}_t^H)^2)dt = (1 - \eta)\frac{(1 - \theta)^2 \tilde{\sigma}^2 \phi^2 (1 - \phi^2)}{(\phi^2 (1 - \eta) + \eta)^2}dt$$

planner cannot choose ψ or η but has some control over μ^η

Optimal monetary policy

Payoff flow

$$f(\eta,\theta) = \lambda \log \eta + (1-\lambda) \log(1-\eta) + \frac{\log(1-\theta)}{\rho \kappa} - \frac{\rho \kappa + 1}{\rho \kappa} \log(\rho \kappa + 1 - \theta)$$
$$-\frac{(1-\theta)^2 \tilde{\sigma}^2}{2\rho} \left(\lambda \frac{\psi^2 \phi^2}{\eta^2} + (1-\lambda) \frac{(1-\psi)^2}{(1-\eta)^2}\right), \quad \psi = \frac{\eta}{\phi^2 (1-\eta) + \eta}$$

HJB equation
$$\rho V(\eta) = \max_{\theta} f(\eta,\theta) + V'(\eta) \mu^{\eta} \eta + \frac{1}{2} V''(\eta) (\sigma^{\eta} \eta)^2$$

Law of motion of η $\frac{d\eta}{n} = (1 - \eta) \frac{(1 - \theta)^2 \tilde{\sigma}^2 \phi^2 (1 - \phi^2)}{(\phi^2 (1 - \eta) + \eta)^2} dt$

Optimal ϑ

$$\max_{\theta} \frac{\log(1-\theta)}{\rho\kappa} - \frac{\rho\kappa + 1}{\rho\kappa} \log(\rho\kappa + 1 - \theta) \\
- (1-\theta)^{2} \frac{\tilde{\sigma}^{2}}{2\rho} \left(\lambda \frac{\psi^{2}\phi^{2}}{\eta^{2}} + (1-\lambda) \frac{(1-\psi)^{2}}{(1-\eta)^{2}}\right) + V'(\eta) (1-\theta)^{2} \frac{\eta(1-\eta)\tilde{\sigma}^{2}\phi^{2}(1-\phi^{2})}{(\phi^{2}(1-\eta) + \eta)^{2}}$$

• θ affects the drift of η . It is optimal to choose

$$\vartheta^* \left(\tilde{\sigma}^2 \left(\lambda \frac{\psi^2 \phi^2}{\eta^2} + (1 - \lambda) \frac{(1 - \psi)^2}{(1 - \eta)^2} \right) - 2\rho V'(\eta) \frac{\eta (1 - \eta) \tilde{\sigma}^2 \phi^2 (1 - \phi^2)}{(\phi^2 (1 - \eta) + \eta)^2} \right)$$

Speed up η when V' > 0, slow down when V' < 0

Example: using θ to push η

$$\rho = 0.05, \kappa = 2, \tilde{\sigma} = 0.3, \phi = 0.5, \lambda = 0.2$$

Thank you!