Motivation

- **Aim:** Bridge the gap between
 - Macro/monetary research
 - Finance research

- **Financial sector helps to**
 - overcome financing frictions and
 - channels resources
 - creates money

... but
- Credit crunch due to adverse feedback loops & liquidity spirals
 - Non-linear dynamics

- **New insights to monetary and international economics**
- Price stability
 Monetary policy

- Financial stability
 Macroprudential policy

- Fiscal debt sustainability
 Fiscal policy

- Short-term interest
- Policy rule (terms structure)

- Reserve requirements
- Capital/liquidity requirements
- Collateral policy
- Margins/haircuts
- Capital controls
Methodology

- **Verbal Reasoning** *(qualitative)*
 - Fisher, Keynes, ...

Macro
- Growth theory
 - *Dynamic (cts. time)*
 - *Deterministic*
- Introduce stochastic
 - *Discrete time*
 - Brock-Mirman, Stokey-Lucas
 - DSGE models
- Cts. time macro with financial frictions

Finance
- Portfolio theory
 - *Static*
 - *Stochastic*
- Introduce dynamics
 - *Continuous time*
 - Options Black Scholes
 - Term structure CIR
 - Agency theory Sannikov
Pre-crisis Macro

- Price/wage rigidities

- Expectations of
 - cash flow
 - “the” short-term interest rate

\[\Delta \text{price} = f(\Delta E[\text{future cash flows}], \Delta \text{risk premia}) \]

- Expectation hypothesis
- Credit spread = expected default

- Euler equation
 - Substitution effects

Post-crisis Macro & Finance

- Financial frictions

- Endogenous risk/volatility
 - e.g. runs, sudden stops, ...

- Risk premia time varying

- Term risk premia
- Credit risk premia

- Wealth redistribution
 - Income/wealth effect
Heterogeneous Agents & Frictions

- Lending-borrowing/insuring since agents are different

 - Poor-rich
 - Productive
 - Less patient
 - Less risk averse
 - More optimistic

 - Rich-poor
 - Less productive
 - More patient
 - More risk averse
 - More pessimistic

- Friction \rightarrow $p_s MRS_s$ different even after transactions

- Wealth distribution matters! (net worth of subgroups)
- Financial sector is not a veil
Types of Distortions

- Belief distortions
 - Match “belief surveys” \((BGS)\)

- Incomplete markets
 - “natural” leverage constraint \((BruSan)\)
 - Costly state verification \((BGG)\)

- Leverage constraints
 (no “liquidity creation”)
 - Exogenous limit \((Bewley/Ayagari)\)

- Collateral constraints
 - Next period’s price \((KM)\)
 \[Rb_t \leq q_{t+1}k_t \]
 - Next periods volatility \((VaR, JG)\)
 - Current price

- Search Friction \((DGP)\)
Overview: Financial Crises

- Run-up phase
 - Distorted Beliefs
 - Concentration of Risk
 - Maturity Shortening

- Crash phase
 - Fire-sales
 - Paradox of Prudence
 - Spillovers

- Recovery phase
 - Persistence vs. Resilience
 - Dynamic Amplification
 - Volatility Dynamics/Volatility Paradox

Externalities

Strategic Complements/Substitutes
The 2 Components of Systemic Risk

1. Systemic risk build-up during (credit) bubble... and materializes in a crisis
 - “Volatility Paradox” → contemp. measures inappropriate
 - Vulnerability focus instead of timing focus

2. Spillovers/contagion
 - Direct contractual: domino effect – network
 - Indirect: price effect (fire-sale externalities), credit crunch, liquidity spirals

3. Persistence/Slow recovery

[Diagram showing the process from shock to capital, loss of net worth, precaution and tighter margins, and fire sales, volatility, and nonlinearity, leading to persistence and slow recovery]
The 2 Components of Systemic Risk

1. Systemic risk build-up during (credit) bubble
 ... and materializes in a crisis
 - time-series
 - “Volatility Paradox” → contemp. measures inappropriate
 - Vulnerability focus instead of timing focus

2. Spillovers/contagion
 - Direct contractual: domino effect – network
 - Indirect: price effect (fire-sale externalities)

3. Persistence/Slow recovery

preventive

crisis management
Run-up 1: Bubbles due to Beliefs “Distortions”

- **Extrapolative Expectations**
 - Representativeness heuristic
 - Overestimate of productivity after good shock
 - Bubbles/overinvestment driven by *level of beliefs* a la Miller (1977)
 - AS: Surveys consistent with each other, mutual fund flows

- **Heterogeneous beliefs**: optimists and pessimists
 - + limited commitment ⇒ Leverage cycle
 - “Marginal buyer” vary with shocks

- **Surveys elicit “consensus beliefs” ≠ marginal buyer’s beliefs**

- **Switching** heterogeneous beliefs ⇒ Speculation
 (Resale option a la Harrison-Kreps/Scheinkman-Xiong):
 - optimist/pessimist “switching” + short-sale constraint
 - ⇒ Bubbles, volatility, and transaction volume
Run-up 2: Concentration of Risk

- Financial frictions models:
 - “Experts” hold most of aggregate risk in good times
 - Low volatility, but risk builds up in background
 - Credit cycle: (BGG/KM/BruSan)

- Leverage cycle: (JG/BruPed) extreme leverage in cts. time limit
Run-up 3: Maturity Mismatch

- Brunnermeier-Oehmke: Maturity “rat race”
 - Incentive to dilute creditors
- Diamond-Dybvig: Demand for liquidity
- Calomiris-Kahn: Discipline for banker
Run-up 3: Maturity Mismatch

- Brunnermeier-Oehmke: Maturity “rat race”
 - Incentive to dilute creditors
- Diamond-Dybvig: Demand for liquidity
- Calomiris-Kahn: Discipline for banker

Run-up 4: Build-up of Interlinkages

- Kopytov (2018)
Run-up 5: Build-up Strategic Complementarity

- In payoffs: externalities
 \[\frac{\partial u_i}{\partial x^{-i}} \]
 - If others sell, I suffer a negative shock
 - Pecuniary externalities
 - Incomplete markets setting
 - Price affects collateral constraint
 - Normative theory (welfare implications)

- In response: strategic substitutes/complements
 \[\frac{\partial \partial u_i}{\partial x^i \partial x^{-i}} \]
 - If others sell, it is more profitable for me to also sell
 - Descriptive/positive theory
Run-up 5: Build-up Strategic Complementarity

- A “strategic-substitute-externality”

 (we Germans like long words 😊)

- Externality:
 individual ignores that his action leads to a build-up of strategic complementarities
 - With potential large price swings/fire sales

- Pecuniary externality: e.g. fire-sale externality
Externality: negative

\[i\text{'s best response} \]

\[\text{negative externality} \]
Externality: positive

Positive externality

\(i \)'s best response

others' average actions
Strategic substitutability

If others respond less, (price goes down)
You respond more (buy more)

“Respond like a maverick”
Strategic Complementarity

If others respond less, (price goes down)
You respond less (buy less)
Externalities vs. Strategic Complementarities

- Externalities (payoff spillovers) \(\frac{\partial u^i}{\partial x^{-i}} \)

and

- Strategic Complementarity/Substitutability \(\frac{\partial \frac{\partial u^i}{\partial x^i}}{\partial x^{-i}} = \frac{\partial \frac{\partial u^i}{\partial x^{-i}}}{\partial x^i} \)

 - can be independent of each other
 - ...but note: if \(\frac{\partial u^i}{\partial x^{-i}} = 0 \), then \(\frac{\partial \frac{\partial u^i}{\partial x^i}}{\partial x^{-i}} = 0 \)

- Connection:
 - Due to strategic complementarities \(x^{-i} \) changes a lot
 - Which causes large externality (spillover)
Shock prior to run-up of imbalances

Strategic substitutability

If others respond less, (price goes down)
You respond more (buy more)

Shock absorber

i’s best response

others’ average actions
Shock prior to run-up of imbalances

Shock by 10, but equilibrium declines only by 9
Run up of imbalances

Strategic complementarities

If others were to respond less, (price goes down) you also respond less (buy less/sell)

Shock amplifier

Only off equilibrium changes (price is still high, but ...)

i’s best response

Run-up

others’ average actions
Run up of imbalances

Strategic complementarities

If others were to respond less, (price goes down)
you also respond less (buy less/sell)

Shock amplifier

Only off equilibrium changes
(price is still high, but ...)

i’s best response

Traders lever up by paying out dividend
(more constrained after negative shock)

Example: Run-up

others’ average actions
Shock after run-up

Shock by 10
Leads to equilibrium effect of 30

i’s best response

Run-up

Shocks

Others’ average actions
2nd, 3rd round effects: Amplification

Initial fundamental shock/trigger is amplified
Amplification of Fundamental Shock

Multiplicity: without Fundamental Shock

"Remember that hurricane a thousand miles away? That was me!"
2nd, 3rd round effects: Amplification

Multiplicity

\(i\text{’s best response}\)

Run-up

Shock

Multiplicity

Jump

Amplification

Others’ average actions
2nd, 3rd round effects: Amplification

Multiplicity

i’s best response

 multiplicities

 Run-up

 shock

 jump

 amplification

 others’ average actions
Multiplicity – Crisis vulnerability without shock

- Only off equilibrium changes (price is still high, but ...)

Strategic complementarities

- If others were to respond less, You also respond less

- Even stronger (slope >1)
 - Drop without fundamental shock

Graph:

- i’s best response
- Run-up
- Others’ average actions
Overview: Financial Crises

- Run-up phase
 - Distorted Beliefs
 - Concentration of Risk
 - Maturity Shortening

- Crash phase
 - Traditional Bank Runs
 - Modern Banks and Liquidity Spirals
 - Fire-sales
 - Spillovers

- Recovery phase
 - Persistence vs. Resilience
 - Dynamic Amplification
 - Volatility Dynamics/Volatility Paradox

Externalities

Strategic Complements/Substitutes
The 2 Components of Systemic Risk

1. Systemic risk build-up during (credit) bubble ... and materializes in a crisis
 - "Volatility Paradox" contemp. measures inappropriate
 - Vulnerability focus instead of timing focus

2. Spillovers/contagion
 - Direct contractual: domino effect – network
 - Indirect: price effect (fire-sale externalities) credit crunch, liquidity spirals

3. Persistence/Slow recovery

- preventive
- crisis management
- nonlinearity
- time-series
- cross sectional
- network
- liquidity
Traditional vs. modern banks

- Bank run
a la Diamond-Dybvig
 - ... but inertia
 also due to demand deposit insurance

- Whole sale funding liq. risk like in Brunnermeier-Pedersen
 - Short-term
 - No inertia
 \[\text{Essentially senior}\]

- Fire-sales of tradable assets
- Risk shifting towards depositors (insurance)
Bank Runs

+ Silent bank run (via internet)
Example: Bank Run – Multiple Equilibria

- Best response of agents at \(t = 1 \) who learned that they are “late consumers”

If bank issues extra equity to purchase liquid asset
Traditional vs. modern banks

- **Bank run a la Diamond-Dybvig**
 - Demand deposit
 - FDIC insurance -- inertia
 - Illiquid loans

- **Whole sale funding liq. risk like in Brunnermeier-Pedersen**
 - Short-term
 - No inertia
 - Collateralized

- **Fire-sales of tradable assets**

- **Risk shifting towards depositors (insurance)**

- **Essentially senior**
Financial Frictions

- Incomplete markets
 - E.g. only debt contracts due to adverse selection

- Leverage constraints
 - Exogenous limit (Bewley/Ayagari)

- Collateral constraints
 - (Current price)
 - Next period’s price (KM)
 \[R_b_t \leq q_{t+1} k_t \]
 - Next periods volatility (VaR)

The debt limit can depend on prices/volatility.
Liquidity Concepts

- Financial instability arises from the fragility of liquidity

Market liquidity
- Specificity of capital
 - Price impact of capital sale

Funding liquidity
- Maturity structure of debt
 - Can’t roll over short term debt
- Sensitivity of margins
 - Margin-funding is recalled

- *Liquidity mismatch* determines severity of amplification, (sunspot) runs, ... “strategic complementarities”
Margins/Haircuts Spirals

- How are margins set by brokers/exchanges?
 - Value at Risk: \(\text{Pr}(- (p_{t+1} - p_t) \geq m) = 1\% = \pi \)

- For collateralized lending, debt constraints are directly linked to the volatility of collateral
 - Constraints are more binding in volatile environments
 - Feedback effect between volatility and constraints

- Margin spiral force agents to delever in times of crisis
 - Collateral runs counterparty bank run
 - Multiple equilibria
Leverage with Margin Funding

- action/holdings of “expert traders”
 - residual supply $S(p)$
 - i’s best response
 - higher holding, \Rightarrow higher price
Leverage with Margin Funding

- action/holdings of "expert traders"

- residual supply $S(p)$

\[S(p) \]

\[i \text{'s best response} \]

\[\Rightarrow \text{higher holding, } \Rightarrow \text{higher price} \]
Leverage with Margin Funding

- action/holdings of “expert traders”
 - residual supply $S(p)$
 - expert traders forced to sell
 - Others sell ⇒ price drops
 - higher holding, ⇒ higher price

Graphical representation showing the interaction between expert traders and the residual supply function $S(p)$, indicating how increased holdings can drive prices down due to forced selling by expert traders.
Leverage with Margin Funding

- action/holdings of “expert traders”

- expert traders forced to sell

- Others sell

 ⇒ price drops

 (1) ⇒ losses

 (2) ⇒ volatility/VaR estimate ⇒ margins
Leverage with Margin Funding

- action/holdings of “expert traders”

\[i \text{’s best response} \]

expert traders forced to sell

⇒ others’ average actions

⇒ others sell

⇒ price drops

(1) ⇒ losses

(2) ⇒ volatility/VaR estimate ⇒ margins
Liquidity Spirals – Amplification effects

- Loss Spiral
- Margin Spiral

- Shock to capital ➔ Loss of net worth ➔ Precaution + tighter margins ➔ Fire sales ➔ nonlinearity ➔ volatility price

- Loss Spiral:
 - Loss of net worth ➔ Precaution + tighter margins

- Margin Spiral:
 - Precaution + tighter margins ➔ Fire sales ➔ nonlinearity ➔ volatility price

- Nonlinearity:
 - Fire sales ➔ nonlinearity
 - Volatility price ➔ nonlinearity

- Shock to capital ➔ Loss of net worth

- Precaution + tighter margins ➔ Fire sales ➔ nonlinearity ➔ volatility price

Amplification/Destabilizing after Large Shock

- After a large (fundamental) shock

```
i’s best response

“large shock amplifier”
```
Stabilizing after Small Shocks

- After a small (fundamental shock)

"small shock absorber"
DeStabilizing after Large Shock

- After a large (fundamental) shock

\[i's \ best \ response \]

"small shock absorber"

"large shock amplifier"
Crash 2: Endogenous Fat Tails

- Initial shock is normally distributed
- Return distribution due to strategic complementarities
Impact of Higher Leverage due to Stock Repurchase

- Starting point

If firm *repurchases equity* paid with liquid asset
⇒ lower capital ratio
⇒ even smaller shocks lead to sharp drops
⇒ fat tails
Impact of More Liquidity Mismatch

- Starting point

If firm sells liquid safe asset and buys less liquid risky (long-maturity) asset.
Impact of More Liquidity Mismatch

- Higher leverage

If firm sells liquid safe asset and buys less liquid risky (long-maturity) asset
⇒ lower (risk-weighted) capital ratio
⇒ more liquidity mismatch
Impact of More Liquidity Mismatch

- Margin spiral ⇒ more strategic complementarity

If firm sells liquid safe asset and buys less liquid (long-maturity) asset
Leverage Dynamics

- **Credit cycle:** *(Loss spiral)*
 - Constant volatility exog. shocks
 - Underinvestment (second best user problem)

- **Leverage cycle:** *(Margin spiral/Repo run)*
 - Exogenously time-varying volatility
 - ARCH/Scary bad news ⇒ Destabilizing Margins
 - ⇒ Pro-cyclical leverage

- **Evidence:** Pro- vs. countercyclical leverage depends on
 - investor type, book vs. market, new issuance vs. overall
Pro- vs. Counter-cyclical Leverage

- **Adrian-Shin (2014): Book vs. market leverage**
 - Intermediaries finance new assets with debt ⇒ Pro-cyclical

- **Geanakoplos-Pedersen (2014): New vs. old leverage**
 - Margins spike in crisis ⇒ Pro-cyclical

- **He, Kelly, Manela (2017): Different constraints**
 - “Equity constraint”: BGG/BruSan, countercyclical leverage
 - “Debt constraint”: Leverage cycle, procyclical leverage
 - Book/market leverage positively correlated for dealers
 - Evidence from HFs in Ang et al. (2011)
 - HFs procyclical, investment banks countercyclical
Run on Repo or not?

1. Not system-wide

2. Tri-party and bilateral repo markets behaved very differently

3. In tri-party market, runs on
 a. select **counterparties** (Lehman)
 - Diamond-Dybvig run
 b. select **collateral** (private label MBS/ABS)
 - Brunnermeier-Pedersen run
US Repo Run? 2008/9

- Margins on **collateral assets**
 - **very stable** in tri-party repo market
 - Copeland, Martin, Walker (2011)
 - Opposing view: Gorton, Metrick (2011)
 - Not stable on **private MBS/ABS**
 - but small relative to overall MBS/ABS market (3%)
 - ABCP was a much bigger part...
 - Krishnamurthy, Nagel, Orlov (2011)
- Margin jump/run on selected **counterparties**
 - Bear Stearns (anecdotally)
 - Lehman (in data)
 - Not in Krishnamurthy et al.
ABCP collapse – rollover risk

- ABCP dries up
 - no rollover, esp. by money market funds ("Break the Buck" Rule 2a-7)
- SIVs draw on credit lines of sponsoring bank
- Banking Crisis: IKB, SachsenLB, Northern Rock, IndyMac, ...

![Graph](https://via.placeholder.com/150)
ABCP: Composition
Crash 3: Spillover across Institutions

- Financial Contagion

- Broadly, two types:
 - Contractual linkages: (Direct) cross-exposures
 - General equilibrium linkages: (Indirect) price effects.
Absorbers vs. amplifier

- **Shock absorber**
- **Shock amplifier**

- Depends on strategic substitutability/complementarity

Table: Distribution of Exogenous vs. Endogenous

<table>
<thead>
<tr>
<th>Direct</th>
<th>Indirect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractual links</td>
<td>“Virtual links”</td>
</tr>
<tr>
<td>Loss through bankruptcy/default</td>
<td>Similar exposure than other levered players</td>
</tr>
<tr>
<td>Position data</td>
<td>Response indicator</td>
</tr>
<tr>
<td></td>
<td>- expectations/constraints</td>
</tr>
</tbody>
</table>

Diagram:
- **Fat tail**
- **Distribution:** exogenous, endogenous
Market Connectedness and Contagion

- Connected Interbank market

- Not fully connected market

- The more connected the larger is the scope for contagion

- Trade-off: Spillover/contagion vs. diversification!
Systemic Risk Measure: $\Delta CoVaR$

- **In returns**
 - VaR_q^j is defined as quantile
 \[\text{Pr}(X^j \leq \text{VaR}_q^j) = q \]
 - $\text{CoVaR}_q^{j|c(X^i)}$ is the conditional quantile
 \[\text{Pr}(X^j \leq \text{CoVaR}_q^{j|c(X^i)} | c(X^i)) = q \]
 - The contribution
 \[\Delta \text{CoVaR}_q^{j|i} = \text{CoVaR}_q^{j|X^i=\text{VaR}_q^i} - \text{CoVaR}_q^{j|X^i=\text{VaR}_{50}^i} \]
 - **In dollars**
 \[\Delta \text{VaR}_q^{j|i} = \text{Size}_i \times \Delta \text{CoVaR}_q^{j|i} \]
\[\Delta \text{CoVaR} \ vs. \ \text{VaR} \]

- Probability of a tree catching fire
- Probability of a tree on fire spilling over to forest
Various conditionings

- $\Delta CoVaR$
 - Q1: Which institutions move system (in a non-causal sense)
 - VaR_{system}^i | institution i in distress

- Exposure $\Delta CoVaR$
 - Q2: Which institutions are most exposed if there is a systemic crisis?
 - VaR_i^i | system in distress

- Network $\Delta CoVaR$
 - VaR of institution j conditional on i

- Asset by asset $\Delta CoVaR$
Crash 3: Paradox of Prudence

- “Micro-prudence” of bank is “macro-imprudent”
- Two “spirals” amplify
 - Liquidity spiral (price of capital)
 - Disinflationary spiral (price of money)
Crash 3: Paradox of Prudence

- "Micro-prudence" of bank is "macro-imprudent"
- Two "spirals" amplify
 - Liquidity spiral (price of capital)
 - Disinflationary spiral (price of money)
 - Banks issue less inside money (& diversify less risk risk)
 - HH demand more money

BruSan "The I Theory of Money"

\[\begin{align*}
\text{HH Net worth} & \quad \text{Inside equity} \\
\text{Money} & \quad \text{Risky Claim} \\
\end{align*} \]

Like Keynes' Paradox of Thrift, but in risk-space

\[\Rightarrow \text{Lower inflation} \]
Crash 4: Spillovers Across Assets

- **Net worth channel:**
 - Expert net worth affects all assets
 - Leverage cycle: Spillovers from “crossover” investors JG
 - Margins spike in one market
 ⇒ Crossover investors transfer capital from other markets
- **BruPed:** Multiple equilibria:
 - Joint jump in price across assets
 - Even assets with uncorrelated payoffs jump together
 - Could also be integrated in a DD-model

- Measurement: \textit{CoVaR}
Overview: Financial Crises

- **Run-up phase**
 - Distorted Beliefs
 - Concentration of Risk
 - Maturity Shortening

- **Crash phase**
 - Traditional Bank Runs
 - Modern Banks and Liquidity Spirals
 - Fire-sales
 - Spillovers

- **Recovery phase**
 - Persistence vs. Resilience
 - Dynamic Amplification
 - Volatility Dynamics/Volatility Paradox
Dynamic Amplification

- **Static** amplification occurs because fire-sales of capital from productive sector to less productive sector depress asset prices
 - Importance of *market liquidity* of physical capital
- **Dynamic** amplification occurs because a temporary shock translates into a persistent decline in output and asset prices
 - Forward
 - Backward

- Forward: grow net worth via retained earnings
- Backward: asset pricing
“Single Shock Critique”

- Critique: After the shock all agents in the economy know that the economy will deterministically return to the steady state.
 - Length of slump is deterministic (and commonly known)
 - No safety cushion needed
 - In reality an adverse shock may be followed by additional adverse shocks
 - Build-up extra safety cushion for an additional shock in a crisis

- Impulse response vs. volatility dynamics
Endogenous Volatility & Volatility Paradox

- Endogenous Risk/Volatility Dynamics in BruSan
 - Beyond Impulse responses
 - Input: constant volatility
 - Output: endogenous risk time-varying volatility

⇒ Precautionary savings
 - Role for money/safe asset

⇒ Nonlinearities in crisis ⇒ endogenous fat tails, skewness

- Volatility Paradox
 - Low exogenous (measured) volatility leads to high build-up of (hidden) endogenous volatility (Minsky)
Speed of Recovery

- Speed of Recovery
 - KM: deterministic
 - BruSan: Length of recession is stochastic
 \Rightarrow precautionary savings
Persistence

- Even in standard real business cycle models, temporary adverse shocks can have long-lasting effects.
- Due to feedback effects, persistence is much stronger in models with financial frictions:
 - Bernanke & Gertler (1989)
 - Carlstrom & Fuerst (1997)
- Negative shocks to net worth exacerbate frictions and lead to lower capital, investment and net worth in future periods.
CF: Persistence & Dampening

- Negative shock in period t decreases N_t
 - This increases financial friction and decreases I_t
- Decrease in capital supply leads to
 - Lower capital: K_{t+1}
 - Lower output: Y_{t+1}
 - Lower net worth: N_{t+1}
 - Feedback effects in future periods $t + 2, ...$
- Decrease in capital supply also leads to
 - Increased price of capital q_t
 - Dampening effect on propagation of net worth shock
Persistence ⇒ Dynamic Amplification

- Bernanke, Gertler and Gilchrist (1999) introduce *technological illiquidity* in the form of nonlinear adjustment costs to capital.

- Negative shock in period t decreases N_t
 - This increases financial friction and decreases I_t.

- In contrast to the dampening mechanism present in CF, now decrease in capital demand (not supply) leads to:
 - Decreased price of capital due to adjustment costs.
 - *Amplification* effect on propagation of net worth shock.
BGG assume separate investment sector
- This separates entrepreneurs’ capital decisions from adjustment costs

Φ(·) represents *technological illiquidity*
- Increasing and concave with Φ(0) = 0
- $K_{t+1} = \Phi \left(\frac{I_t}{K_t} \right) K_t + (1 - \delta)K_t$

FOC of investment sector
- \[\max_{I_t} \{q_t K_{t+1} - I_t\} \Rightarrow q_t = 1/\Phi' \left(\frac{I_t}{K_t} \right)\]
Kiyotaki & Moore (KM) ’97

- Kiyotaki, Moore (1997) adopt a collateral constraint, $Rb_t \leq q_{t+1}k_t$, instead of CSV market illiquidity – second best use of capital

- Output is produced in two sectors, differ in productivity

- Aggregate capital is fixed, resulting in extreme technological illiquidity
 - Investment is completely irreversible

- Durable asset has two roles:
 - Collateral for borrowing
 - Input for production
KM Amplification

- **Static** amplification occurs because fire-sales of capital from productive sector to less productive sector depress asset prices
 - Importance of *market liquidity* of physical capital
- **Dynamic** amplification occurs because a temporary shock translates into a persistent decline in output and asset prices
 - Forward: grow networth via retained earnings
 - Backward: asset pricing
“Kocherlakota Critique”

- Amplification for negative shocks differs from positive shocks
 - In Kocherlakota (2000) optimal scale of production (positive shock does not lead to expansion)
- Amplification is quantitatively too small
 - Capital share is only 1/3 and hence GDP is too small

- Cordoba and Ripoll (2004)
 - Needs sizeable capital share plus
 - Low intertemporal substitution
“Single Shock Critique”

- Critique: After the shock all agents in the economy know that the economy will deterministically return to the steady state.
 - Length of slump is deterministic (and commonly known)
 - No safety cushion needed

- In reality an adverse shock may be followed by additional adverse shocks
 - Build-up extra safety cushion for an additional shock in a crisis

- Impulse response vs. volatility dynamics
Endogenous Volatility & Volatility Paradox

- Endogenous Risk/Volatility Dynamics in BruSan
 - Beyond Impulse responses
 - Input: constant volatility
 - Output: endogenous risk time-varying volatility

⇒ Precautionary savings
 - Role for money/safe asset

⇒ Nonlinearities in crisis ⇒ endogenous falt tails, skewness

- Volatility Paradox
 - Low exogenous (measured) volatility leads to high build-up of (hidden) endogenous volatility (Minsky)
Conclusion

- “Run-up”, “Crisis”, and “Recovery”-mechanisms
 - Belief-focused (representative + heterogeneous)
 - Friction-focused, where risk is central
- Risk concentration, fire-sales, spillovers, ...
- Paradox of Prudence
- Volatility Paradox
 - Mean-Amplification, Exog. ARCH, Endog. Volatility Dynamics

- Macro/Monetary models with financial sector should include
 - physical investment
 - inside money creation