The I Theory of Money & On the Optimal Inflation Rate

Markus Brunnermeier & Yuliy Sannikov

iikov

"Money and Banking" (in macro-finance)

- Banking —— "diversifier" holds risky assets, issues inside money

- Banking —— "diversifier" holds risky assets, issues inside money
- Amplification/endogenous risk dynamics
 - Value of capital declines due to fire-sales Liquidity spiral
 - Flight to safety
 - Value of money rises
 - Demand for money rises less idiosyncratic risk is diversified

Disinflation spiral a la Fisher

- Supply for inside money declines less creation by intermediaries
 - Endogenous money multiplier = f(capitalization of critical sector)
- Paradox of Thrift (in risk terms)

store of value/safe asset Money

Banking "diversifier"

holds risky assets, issues inside money

Disinflation spiral a la Fisher

- Amplification/endogenous risk dynamics
 - Value of capital declines due to fire-sales Liquidity spiral
 - Flight to safety
 - Value of money rises
 - less idiosyncratic risk is diversified Demand for money rises
 - Supply for inside money declines less creation by intermediaries
 - Endogenous money multiplier = f(capitalization of critical sector)

(in risk terms)

Brunnermeier & Sannikov

- store of value/safe asset Money
- Banking "diversifier"

holds risky assets, issues inside money

- Amplification/endogenous risk dynamics
 - Value of capital declines due to fire-sales Liquidity spiral
 - Flight to safety
 - Value of money rises

Disinflation spiral a la Fisher

- less idiosyncratic risk is diversified Demand for money rises
- Supply for inside money declines less creation by intermediaries
 - Endogenous money multiplier = f(capitalization of critical sector)

(in risk terms)

Monetary Policy (redistributive)

Some literature

- Roles of money
 - Unit of account
 - Medium of exchange (Clower, Lagos & Wright)
 - Store of value (Samuelson, Bewley, Aiyagari, Scheinkman & Weiss, Kiyotaki & Moore)
- Models without inside money imply inflation in downturns
 - Less money needed to perform fewer transactions
- "Money view" (Friedman & Schwartz)
- "Credit view"
 - Downturns → equity capital → bank cuts assets/credit
 - BGG, Kiyotaki & Moore, He & Krishnamurthy, BruSan2014, Drechsler, Jeanne & Korinek, Savov & Schnabl
- Financial Stability
 - Diamond & Rajan 2010, Curdia & Woodford 2010, Stein 2012

Monetary Policy Transmission Channel

Consumption Boost approach to "Bottleneck approach"

(New) Keynesian Demand Management		I Theory of Money Risk (premium) management
Stimulate aggregate consumption Substitution effect		Alleviate balance sheet constraints Income/wealth effect
Woodford	Tobin (1982)	BruSan
Price stickiness Perfect capital markets	Both	Financial Frictions Incomplete markets
Representative Agent	Heterogeneous Agents	
Cut i Reduces r due to price stickiness Consumption c rises		_ _

Monetary Policy Transmission Channel

Consumption Boost approach to "Bottleneck approach"

		· I
(New) Keynesian Demand Management		I Theory of Money Risk (premium) management
Stimulate aggregate consumption Substitution effect		Alleviate balance sheet constraints Income/wealth effect
Woodford	Tobin (1982)	BruSan
Price stickiness Perfect capital markets	Both	Financial Frictions Incomplete markets
Representative Agent	Heterogeneous Agents	
Cut i Reduces r due to price stickiness Consumption c rises	Cut i Changes bond prices Redistributes from low MPC to high MPC consumers	- -

Monetary Policy Transmission Channel

Consumption Boost approach to "Bottleneck approach"

(New) Keynesian Demand Management		I Theory of Money Risk (premium) management
Stimulate aggregate consumption Substitution effect		Alleviate balance sheet constraints Income/wealth effect
Woodford	Tobin (1982)	BruSan
Price stickiness Perfect capital markets	Both	Financial Frictions Incomplete markets
Representative Agent	Heterogeneous Agents	
Cut i Reduces r due to price stickiness Consumption c rises	Cut i Changes bond prices Redistributes from low MPC to high MPC consumers	Cut i Changes asset prices Ex-post: Redistributes to balance sheet impaired sector QE

Literature

Without intermediaries: Money as store of value = bubble

\Friction	OLG	Incomplete Markets +	idiosyncratic risk
Risk	deterministic	endowment risk borrowing constraint	investment risk
Only money	Samuelson	Bewley	
With capital	Diamond	Aiyagari	Angeletos

Brunnermeier & Sannikov

Risk tied up with individual

capital

Literature

Without intermediaries: Money as store of value = bubble

\Friction	OLG	Incomplete Markets + i	diosyncratic risk
Risk	deterministic	endowment risk borrowing constraint	investment risk
Only money	Samuelson	Bewley	
With capital	Diamond	Aiyagari	Angeletos $q = 1$

depends on

price of capital q

Literature

Without intermediaries: Money as store of value = bubble

\Friction	OLG	Incomplete Markets +	diosyncratic risk
Risk	deterministic	endowment risk borrowing constraint	investment risk
Only money	Samuelson	Bewley	
			- Basic "I Theory"
With capital	Diamond	Aiyagari	cash flow shock
	$f'(k^*) = r^*$, Dynamic inefficiency $r < r^*$, $K > K^*$	Inefficiency $r < r^*$, $K > K^*$	Pecuniary externality Inefficiency $r > r^*$, $K < K^*$
	(money) bubbles if $r < g$ Abel et al. vs. Geerolf		$r^m = g$

Roadmap

- Model without intermediaries
 - Fixed (outside) money supply
 - Optimal money growth rate
 - "On the optimal inflation rate" (inflation target)
- Model with intermediaries
 - Fixed outside money supply
 - Monetary Policy
 - Macro-prudential policy
- Intermediaries with market power
 - The "Reversal Interest Rate: The Effective Lower Bound"

Model without intermediaries

■ Technologies *a*

- Each household can only operate one firm
 - Physical capital $\frac{dk_t^{'}}{k_t} = (\Phi(\iota_t) - \delta)dt + \sigma^a dZ_t^a + \tilde{\sigma} d\tilde{Z}_t^a$ • Output sector idiosyncratic

risk

$$y_t = Ak_t$$

Demand for money

Adding outside money

- $\blacksquare q_t K_t$ value of physical capital
- $p_t K_t$ value of outside money

■ Technologies *a*

risk

- Each household can only operate one firm
 - Physical capital $\frac{dk_t^{'}}{k_t} = (\Phi(\iota_t) - \delta)dt + \sigma^a dZ_t^a + \tilde{\sigma} d\tilde{Z}_t^a$ • Output sector idiosyncratic

$$y_t = Ak_t$$

Demand for money

Solving

- 1. Postulate
 - Price processes $dp_t/p_t = \mu_t^p dt + \sigma^p dZ_t$, $dq_t/q_t = \cdots$
 - Portfolio processes dx_t^a/x_t^a
- 2. Derive return processes
 - $dr^{Ka} = \cdots$
 - $dr^M = \cdots$ $dt (\mu^M + \mu^{Mi})dt$

money supply growth rate that is NOT distributed via interest payment Set $\mu^{Mi}=0$

- 3. Optimality conditions & Market clearing conditions
- 4. Solve "undetermined coefficients" ($\mu^{x}(s_t), \sigma^{x}(s_t)$)
 - Solving ODE with boundary conditions
 - Solve for constants p, q

Solving

- 1. Postulate
 - \bullet Price processes p_{χ} , $q_{\chi} = \cdots$
 - Portfolio processes x_{k}^{a}
- 2. Derive return processes
 - $dr^{Ka} = (\Phi(\iota) \delta)dt + \sigma^a dZ_t^a + \frac{A \iota}{a}dt + \tilde{\sigma}d\tilde{Z}_t$
 - $dr^M = (\Phi(\iota) \delta)dt + \sigma^a dZ_t^a (\mu^M \mu^{Mi})dt$

money supply growth rate that is NOT distributed via interest payment Set $\mu^{Mi}=0$

- 3. Optimality conditions & Market clearing conditions
- 4. Solve "undetermined coefficients" $(\mu^{x}(s_t), \sigma^{x}(s_t))$
 - Solving ODE with boundary conditions
 - Solve for constants p, q

Aside: Alternative Shocks

Outside Money

■ Technologies *a*

- $\blacksquare q_t K_t$ value of physical capital
- $p_t K_t$ value of outside money

$$\frac{dk_t}{k_t} = (\Phi(\iota_t) - \delta)dt$$
 but

- Real cash flow shocks $\tilde{\sigma}k_t d\tilde{Z}_t^a$
- Nominal cash flow shocks $p_t \tilde{\sigma} k_t d\tilde{Z}_t^a$

risk

- Each household can only operate one firm
 - Physical capital shocks $\frac{dk_t^{'}}{k_t} = (\Phi(\iota_t) - \delta)dt + \sigma^a dZ_t^a + \tilde{\sigma} d\tilde{Z}_t^a$ Output sector idiosyncratic
 - Output

 $y_t = Ak_t$

 \blacksquare Optimality (=) for $E\left[\int_0^\infty e^{ho t} \log c_t \, dt\right]$

Investment rate, ι

Portfolio choice, x^a

lacktriangle Consumption, c_t

Optimality (=)

Investment rate, ι

- Tobin's q: $\Phi'(\iota) = \frac{1}{q}$ (static problem) • For $\Phi(\iota) = \frac{1}{\kappa} \log(\kappa \iota + 1) \Rightarrow \kappa \iota = q - 1$
- Portfolio choice, x^a

 \blacksquare Consumption, c_t

■ Optimality (=)

Investment rate, ι

• Tobin's q:
$$\Phi'(\iota) = \frac{1}{q}$$
 (static problem)
• For $\Phi(\iota) = \frac{1}{\kappa} \log(\kappa \iota + 1) \Rightarrow \kappa \iota = q - 1$

• Portfolio choice, x^a

•
$$E[dr^{Ka} - dr^{M}]/dt = Cov[dr^{Ka} - dr^{M}, \frac{dn_{t}}{\underbrace{n_{t}}}] = x^{a}(\widetilde{\sigma})^{2}$$

$$\chi^{a} = \frac{E[dr^{Ka} - dr^{M}]/dt}{(\widetilde{\sigma})^{2}} = \frac{(A-\iota)/q + \mu^{M}}{(\widetilde{\sigma})^{2}}$$

- ullet Dividend yield on capital must be ho
- \blacksquare Consumption, c_t

■ Optimality (=)

Investment rate, ι

• Tobin's q:
$$\Phi'(\iota) = \frac{1}{q}$$
 (static problem)
• For $\Phi(\iota) = \frac{1}{\kappa} \log(\kappa \iota + 1) \Rightarrow \kappa \iota = q - 1$

• Portfolio choice, x^a

•
$$E[dr^{Ka} - dr^{M}]/dt = Cov[dr^{Ka} - dr^{M}, \frac{dn_{t}}{\underbrace{n_{t}}}] = x^{a}(\tilde{\sigma})^{2}$$

$$\chi^{a} = \frac{E[dr^{Ka} - dr^{M}]/dt}{(\tilde{\sigma})^{2}} = \frac{(A-\iota)/q + \mu^{M}}{(\tilde{\sigma})^{2}}$$

- Dividend yield on capital must be ho
- lacktriangle Consumption, c_t
 - Demand $\rho N_t = \rho (q+p) K_t$

Optimality (=) & market clearing (=)

- Investment rate, ι
 - Tobin's q: $\Phi'(\iota) = \frac{1}{q}$ For $\Phi(\iota) = \frac{1}{\kappa} \log(\kappa \iota + 1) \Rightarrow \kappa \iota = q 1$ (static problem)
- Portfolio choice, x^a

•
$$E[dr^{Ka} - dr^{M}]/dt = Cov[dr^{Ka} - dr^{M}, \frac{dn_{t}}{\underbrace{n_{t}}}] = x^{a}(\widetilde{\sigma})^{2}$$

$$\chi^{a} = \frac{E[dr^{Ka} - dr^{M}]/dt}{(\widetilde{\sigma})^{2}} = \frac{(A-\iota)/q + \mu^{M}}{(\widetilde{\sigma})^{2}} = \frac{q}{q+p}$$

Capital market clearing

- Dividend yield on capital must be ho
- \blacksquare Consumption, C_t Output market clearing • Demand $\rho N_t = \rho (q+p) K_t \stackrel{\downarrow}{=} (A-\iota) K_t$ Supply

• Demand
$$\rho N_t = \rho(q+p)K_t \stackrel{\star}{=} (A-\iota)K_t$$
 Supply

$$q = \underbrace{\left(\frac{q}{q+p}\right)}_{=r^a} (A-\iota)/\rho$$

Equilibrium

Moneyless equilibrium	Money equilibrium
$p_0 = 0$	$p = \frac{\widetilde{\sigma} - \sqrt{\rho}}{\sqrt{\rho}} q$
$q_0 = \frac{\kappa A + 1}{\kappa \rho + 1}$	$q = \frac{\kappa A + 1}{\kappa \sqrt{\rho} \widetilde{\sigma} + 1}$

Welfare analysis

Moneyless equilibrium	Money equilibrium
$p_0 = 0$	$p = \frac{\widetilde{\sigma} - \sqrt{\rho}}{\sqrt{\rho}} q$
$q_0 = \frac{\kappa A + 1}{\kappa \rho + 1}$	$ > q = \frac{\kappa A + 1}{\kappa \sqrt{\rho} \widetilde{\sigma} + 1} $
${g}_0$	> g
welfare ₀	< welfare

Roadmap

- Model without intermediaries
 - Fixed (outside) money supply
 - Optimal money growth rate
 - "On the optimal inflation rate" (inflation target)
- Model with intermediaries
 - Fixed outside money supply
 - Monetary Policy
 - Macro-prudential policy
- Intermediaries with market power
 - The "Reversal Interest Rate: The Effective Lower Bound"

Steady state MoPo – no intermediaries

- Shock structure: real cash flow shock
 - See paper "On the Optimal Inflation Rate" (AER P&P 2016)
- Policy variable: Money growth rate μ
- Portfolio choice: $x^{k*} = \frac{q(A-\iota^*)}{2} + \frac{q^2\mu}{2}$
- Capital markets clearing: $\frac{1}{n+a} = \frac{A-\iota^*}{\tilde{\sigma}^2} + \frac{q\mu}{\tilde{\sigma}^2}$

Equilibrium

Collecting the three equations:

$$q = 1 + \kappa \iota^*$$

$$\rho(p+q) = A - \iota^*$$

$$\frac{\sigma^2}{q+p} = A - \iota^* + q\mu$$

lacksquare Equilibrium solved in terms of $\widehat{\mu} \coloneqq x^k \mu$ (monotone transformation)

$$p = \frac{\sigma(1 + \kappa \rho)}{\sqrt{\rho + \hat{\mu}}} - (1 + \kappa A)$$

$$q = 1 + \kappa A - \frac{\kappa \rho \sigma}{\sqrt{\rho + \hat{\mu}}}$$

$$\iota^* = A - \rho \frac{\sigma}{\sqrt{\rho + \hat{\mu}}}$$

Welfare

- Plug in FOC in value function
- Plug in equilibrium
- All households start symmetrically

Expected Utility of an individual household

$$V = V_0 + \frac{\frac{1}{\kappa} \log \left(1 + \kappa A - \frac{\kappa \rho \sigma}{\sqrt{\rho + \hat{\mu}}} \right) - \delta + \rho - \frac{1}{2} (\rho + \hat{\mu})}{\rho^2} + \frac{\log \left(\frac{\sigma}{\sqrt{\rho + \hat{\mu}}} \right)}{\rho}.$$

closed form!

Optimal inflation rate

lacktriangle Money growth μ affects (steady state) inflation in two ways

$$\pi = \mu^{M} - \underbrace{(\Phi(\iota^{*}(\mu^{M})) - \delta)}_{g}$$

- Proposition:
 - If $\frac{\sigma}{\sqrt{\rho}} > \frac{2(A\kappa+1)}{1+2\kappa\rho}$, welfare maximizing money growth rate $\mu^* > 0$.
 - Market outcome is not even constrained Pareto efficient
 - Economic growth rate, $g > r^m$, is also higher
 - Growth maximizing $\mu^{g^*} \ge \mu^{M^*}$, s.t. $p^{g^*} = 0$, Tobin (1965)

$$\iota^* = A - \rho \frac{\sigma}{\sqrt{\rho + \hat{\mu}}}$$
 increasing in $\hat{\mu}$

- Corollary: No super-neutrality of money
 - Nominal money growth rate affects real economy
 - No price/wage rigidity, no monopolistic competition

Optimal inflation rate: Emerging markets

- Proposition: (comparative static)
 - μ^{M*} does not depend on depreciation rate δ , but inflation does
 - μ^{M*} is strictly increasing in idiosyncratic risk σ "Emerging markets should have higher inflation target"

Conclusion: our 3 initial questions

- What should the (long-run) optimal inflation rate be?
 - Competitive market outcome is constrained Pareto inefficient.
 - Inflation is Pigouvian & internalizes pecuniary externality!
 - HH take real interest rate as given, but
 - Portfolio choice affects economic growth and real interest rate
- What role do financial frictions play?
 - incomplete markets ⇒ no superneutrality of money
 - No price/wage rigidity needed
- Emerging markets, with less developed financial markets, should have higher inflation rate/target
 - Higher idiosyncratic risk ⇒ higher pecuniary externality

Main results

- HH portfolio choice
 - Physical capital: w/ idiosyncratic risk + dividend
 - Money: w/o idiosyncratic risk + no dividend (bubble)
 - Tilted inefficiently towards money
- Money supply growth ⇒ inflation ⇒ "tax on money"
- ⇒ lowers real interest rate ⇒ tilts portfolio choice
- ⇒ boosts physical investment ⇒ higher economic growth
- ⇒ raises real interest rate (partially undoes inflation tax)
- Pecuniary externality:
 - individual households do not take this GE effect into account.
 - Planner who can print money and distribute seignorage can improve growth + Pareto welfare.
- Derive optimal money growth rate/inflation rate

Roadmap

- Model without intermediaries
 - Fixed (outside) money supply
 - Optimal money growth rate
 - "On the optimal inflation rate" (inflation target)
- Model with intermediaries
 - Fixed outside money supply
 - Monetary Policy
 - Macro-prudential policy

Outline of two sector model

■ Technologies *b*

Technologies a

Switch technology

- Households have to
 - Specialize in one subsector for one period

$$\frac{dk_t}{k_t} = \cdots dt + \sigma^b dZ_t^b + \tilde{\sigma} d\tilde{Z}_t^b$$

Demand for money

sector specific + idiosyncratic risk

$$\frac{dk_t}{k_t} = \cdots dt + \sigma^a dZ_t^a + \tilde{\sigma} d\tilde{Z}_t^a$$

Add outside money

Technologies b

Outside Money

■ Technologies *a*

Switch technology

- Specialize in one subsector for one period
- Demand for money

■ Technologies *b*

Technologies a

Net worth

Money Value of the North North

 Risk can be partially sold off to intermediaries Risk is
 <u>not contractable</u>
 (Plagued with
 moral hazard
 problems)

Net worth

Technologies b

■ Technologies a

- Intermediaries
 - Can hold outside equity & diversify within sector b
 - Monitoring

Net worth

Technologies b

- Intermediaries
 - Can hold outside equity & diversify within sector b
 - Monitoring

Outside Money

HH Net worth

■ Technologies *b*

Outside Money

Inside Money

(deposits)

Net worth

Technologies a

A

A

Money

Net worth

- Intermediaries
 - Can hold outside equity
 & diversify within sector b
 - Monitoring
 - Create inside money
 - Maturity/liquidity transformation

■ Shock impairs assets: 1st of 4 steps

Technologies b Pass through

■ Shrink balance sheet: 2nd of 4 steps

"Paradox of Prudence"

Liquidity spiral: asset price drop: 3rd of 4

■ Disinflationary spiral: 4th of 4 steps

■ Technologies *b*

... after an adverse shock

Intermediaries are hit and shrink their balance sheets inducing

Asset side

liquidity spiral

financial stability

Liability side

disinflation spiral

price stability

- Response of intermediaries to adverse shock leads to endogenous risk
 - Amplification
 - Persistence

Other sectors can also be undercapitalized

• Japan 1980: corporate sector

US 2000s: household sector

Formal model: capital & output

Technologies

b

 \boldsymbol{a}

Physical capital K_t

- Capital share

$$\psi_t$$

 $1-\psi_t$

Output goods

Aggregate good (CES)

- Consumed or invested
- numeraire

Price of goods

$$Y_t^b = Ak_t^b$$
 so

 $Y_t^b = Ak_t^b$ Imperfect substitutes $Y_t^a = Ak_t^a$

$$Y_t = \left(\frac{1}{2}(Y_t^b)^{(s-1)/s} + \frac{1}{2}(Y_t^a)^{(s-1)/s}\right)^{s/(s-1)}$$

$$P_t^b = \frac{1}{2} \left(\frac{Y_t}{Y_t^b} \right)^{1/s} \qquad P_t^a = \frac{1}{2} \left(\frac{Y_t}{Y_t^a} \right)^{1/s}$$

■ Model setup in paper is more general: $Y_t = A(\psi_t)K_t$

Formal model: risk

lacktriangle When k_t is employed in sector a by agent j

$$dk_t = (\Phi(\iota_t) - \delta)k_t dt + \sigma^a k_t dZ_t^a + \sigma^j k_t d\tilde{Z}_t^a$$
 independent Brownian motions (fundamental cash flow risk)

- $\Phi(\iota_t)$ is increasing and concave, e.g. $\log[(\kappa \iota_t + 1)/\kappa]$
- All dZ are independent of each other

- Intermediaries can diversify within sector b
 - Face no idiosyncratic risk
- Households cannot become intermediaries or vice versa

Financing constraints

Technologies

Equity issuance

- Special case

b

Inside equity $\chi_t \geq \chi$ $\chi=0\%$ (no inside equity) \boldsymbol{a}

Inside equity only

Households' risk

Intermediaries' risk

 $dZ^b \& d\tilde{Z}^b$

sector & idiosyncratic

 dZ^b

can diversify idiosyncratic risk $dZ^a \& d\tilde{Z}^a$

sector & idiosyncratic

Capital/risk shares

■ Technologies *b*

Formal model: preferences

lacktriangle All agents have logarithmic utility with discount rate ho

$$E\left[\int_0^\infty e^{-\rho t}\log c_t\,dt\right]$$

- Implies
 - Consumption = ρ * net worth
 - Equilibrium Sharpe ratio

 Covariance with net worth

Solution steps

- 1. Postulate endogenous processes
 - $dq_t/q_t = \mu_t^q dt + \sigma_t^{q,a} dZ_t^a + \sigma_t^{q,b} dZ_t^b$
 - Returns from holding capital
- 2. Equilibrium conditions
 - Agents' optimization
 - Internal investment (new capital formation)
 - Optimal portfolio choice

Sharpe ratio

Cov. with net worth

Optimal consumption

- ρ * networth
- Market clearing conditions
- 3. Law of motion of state variable
 - ullet wealth (share) distribution η_t
- 4. Express in ODEs of state variable

Asset returns on technology b

- Physical capital: (in technology b) also earns dividend yield Vector $\frac{dZ_t^a}{dZ_t^b}$, $\frac{dZ_t^b}{dZ_t^b}$
 - If $dq_t/q_t = \mu_t^q dt + (\sigma_t^q)^T dZ_t$,
 - $dk_t/k_t = (\Phi(\iota_t) \delta)dt + \sigma^b dZ_t^b + \tilde{\sigma}^j dZ_t^{b,j}$

Asset returns on technology b

- Physical capital: (in technology b) also earns dividend yield
 - If $dq_t/q_t = \mu_t^q dt + (\sigma_t^q)^T dZ_t$,
 - $dk_t/k_t = (\Phi(\iota_t) \delta)dt + \sigma^b dZ_t^b + \tilde{\sigma}^j dZ_t^{b,j}$
 - $\begin{array}{l} \bullet \ dr_t^b = \frac{AP_t^b \iota_t}{q_t} dt + \left(\Phi(\iota_t) \delta + \mu_t^q + (\sigma_t^q)^T \sigma^i \mathbf{1}^b\right) dt + \left(\sigma_t^q + \sigma^a \mathbf{1}^b\right)^T d\mathbf{Z}_t + \widetilde{\sigma}^j dZ_t^{b,j} \\ \text{Dividend yield} \quad \text{Expected capital gains} \end{array}$

Asset returns on technology b

■ Physical capital: (in technology b) also earns dividend yield

- If $dq_t/q_t = \mu_t^q dt + (\sigma_t^q)^T dZ_t$,
- $dk_t/k_t = (\Phi(\iota_t) \delta)dt + \sigma^b dZ_t^b + \tilde{\sigma}^j dZ_t^{b,j}$
- $dr_t^b = \frac{AP_t^b \iota_t}{q_t} dt + (\Phi(\iota_t) \delta + \mu_t^q + (\sigma_t^q)^T \sigma \mathbf{1}^b) dt + (\sigma_t^q + \sigma \mathbf{1}^b)^T d\mathbf{Z}_t + \widetilde{\sigma}^j d\mathbf{Z}_t^{b,j}$
- $dr_t^a = ...$ (analogous)

$$\chi_t dr_t^{\chi} + (1 - \chi_t) dr_t^I = dr_t^b$$

- Return on outside equity held by intermediaries
 - $dr_t^I = dr_t^b \lambda_t dt$ risk premium
- Return on inside equity (fraction χ_t) held by b-HH
 - $dr_t^{\chi} = dr_t^b + \frac{1-\chi_t}{\gamma_t} \lambda_t dt$

Asset returns on money

- lacktriangle Money: fixed supply in baseline model, total value $p_t K_t$
 - Return = capital gains (no dividend/interest in baseline model)
 - If $dp_t/p_t = \mu_t^p dt + \sigma_t^p dZ_t$,
 - $dK_t/K_t = (\Phi(\iota_t) \delta)dt + \underbrace{(1 \psi_t)\sigma^a dZ_t^a + \psi_t \sigma^b dZ_t^b}_{(\sigma_t^K)^T dZ_t}$

$$dr_t^M = \left(\Phi(\iota_t) - \delta + \mu_t^p + \left(\sigma_t^p\right)^T \sigma_t^K\right) dt + \left(\sigma_t^p + \sigma_t^K\right) dZ_t$$

• $\vartheta_t = \frac{p_t}{q_t + p_t}$ fraction of wealth in form of money

Allocation

Equilibrium is a map

Histories of shocks-----prices q_t, p_t, λ_t , allocation

wealth distribution

$$\eta_t = \frac{N_t}{(p_t + q_t)K_t} \in (0,1)$$

intermediaries' wealth share

- All agents maximize utility
 - Choose: portfolio, consumption, technology
- All markets clear
 - Consumption, capital, money, outside equity of b

Numerical example: prices

Brunnermeier & Sannikov

Numerical example: prices

\blacksquare Numerical example: dynamics of η

fundamental volatility elasticity leverage amplification

\blacksquare Numerical example: dynamics of η

Welfare analysis

- Challenge: Heterogeneous agents with idiosyncratic risks
- Inefficiencies in
 - Production
 - Investment
 - Risk sharing

Roadmap

- Model without intermediaries
 - Fixed (outside) money supply
 - Optimal money growth rate
 - "On the optimal inflation rate" (inflation target)
- Model with intermediaries
 - Fixed outside money supply Amplification/endogenous risk
 - Liquidity spiral asset side of intermediaries' balance sheet
 - Disinflationary spiral liability side
 - Monetary Policy
 - Macro-prudential policy
- Intermediaries with market power
 - The "Reversal Interest Rate: The Effective Lower Bound"

Monetary Policy: Ex-post perspective

Money view

Friedman-Schwartz

- Restore money supply
 - Replace missing inside money with outside money
- Aim: Reduce deflationary spiral
 - ... but banks extent less credit & diversify less idiosyncratic risk away
 - ... as households have to hold more idiosyncratic risk, money demand rises
 - Undershoots inflation target

Credit view

Tobin

- Restore credit
- Aim: Switch off deflationary spiral & liquidity spiral

Policy

- Monetary Policy
 - Introduce long-term bond
 - Central bank's actions change money supply/transfer risk
 - Interest rate cuts in downturns raise the value of long-term bonds
 - Change relative price between long-term bond and short-term money
 - Risk transfer (ex-post redistribution)
- Macro-prudential policy
 - 1. Leverage upper bounds
 - 2. Affect agents portfolio choice directly

Introducing Long-term Gov. Bond

- Introduce long-term (perpetual) bond
 - No default ... held by intermediaries in equilibrium Value $b_t K_t$

• Value of long-term bond is endogenous $dB_t/B_t = \mu_t^B dt + \sigma_t^B dZ_t$

Redistributive MoPo: Ex-post perspective

- Adverse shock → value of risky claims drops
- Monetary policy
 - Interest rate cut ⇒ long-term bond price

- ⇒ "stealth recapitalization" redistributive
- ⇒ risk premia
- Liquidity & Deflationary Spirals are mitigated

Redistributive MoPo: Ex-post perspective

- Adverse shock → value of risky claims drops
- Monetary policy
 - Interest rate cut ⇒ long-term bond price
 - Asset purchase ⇒ asset price
 - → "stealth recapitalization" redistributive
 - ⇒ risk premia
- Liquidity & Deflationary Spirals are mitigated

Monetary policy and endogenous risk

Intermediaries' risk (borrow to scale up) fundamental risk

$$\sigma_t^{\eta} = \frac{x_t \left(1^b \sigma^b - \sigma_t^K\right)}{1 + \left(\frac{\chi_t \, \psi_t - \eta}{\eta_t}\right) \frac{\vartheta'(\eta_t)}{\vartheta/\eta_t} - \left(x_t + \vartheta_t \frac{1 - \eta_t}{\eta_t}\right) \frac{b_t}{p_t} \frac{B'(\eta_t)}{B(\eta_t)/\eta_t}}$$
 amplification mitigation

- MoPo works through $\frac{B'(\eta_t)}{B(\eta_t)/\eta_t}$
 - with right monetary policy bond price $B(\eta)$ rises as η drops "stealth recapitalization"
 - Switch off liquidity and disinflationary spiral
- Example: Remove amplification s.t. $\sigma_t^{\eta} = x_t (1^b \sigma^b \sigma_t^K)$

Numerical example with monetary policy

Prices

Numerical example with monetary policy

lacktriangle Drift and volatility of η

Observations

- As interest rate are cut in downturns, bonds held by intermediaries appreciate, this
 - protects intermediaries against shocks
 - increases the supply of asset that can be used as storage (weakens disinflation)
- Ex-post stabilization
 - Liquidity spiral
 - Disinflationary spiral
- Ex-ante
 - Higher leverage
 - (shift in steady state)

Monetary policy ... in the limit

full risk sharing of all aggregate risk

$$\sigma_t^{\eta} = \frac{x_t(1^b \sigma^b - \sigma_t^K)}{1 - \left(\frac{\chi \psi - \eta}{\eta}\right) \frac{-\vartheta'(\eta)}{\vartheta/\eta} + \left((1 - \vartheta) \frac{\psi \chi - \eta}{\eta} + \vartheta \frac{1 - \eta}{\eta}\right) \frac{b_t - B'(\eta)}{p_t B(\eta)/\eta} }{\longrightarrow -\infty}$$

 $\blacksquare \eta$ is deterministic and converges over time towards 0

Monetary policy: 3 versions

Brunnermeier & Sannikov

Monetary Policy Transmission Channel

_		
(New) Keynesian Demand Management		I Theory of Money Risk (premium) management
Stimulate aggregate consumption Substitution effect		Alleviate balance sheet constraints Income/wealth effect
Woodford	Tobin (1982)	BruSan
Price stickiness Perfect capital markets	Both	Financial Frictions Incomplete markets
Representative Agent	Heterogeneous Agents	
Cut i Reduces r due to price stickiness Consumption c rises		- -

Monetary Policy Transmission Channel

		· I
(New) Keynesian Demand Management		I Theory of Money Risk (premium) management
Stimulate aggregate consumption Substitution effect		Alleviate balance sheet constraints Income/wealth effect
Woodford	Tobin (1982)	BruSan
Price stickiness Perfect capital markets	Both	Financial Frictions Incomplete markets
Representative Agent	Heterogeneous Agents	
Cut i Reduces r due to price stickiness Consumption c rises	Cut i Changes bond prices Redistributes from low MPC to high MPC consumers	- -

Monetary Policy Transmission Channel

	1 1	Betterreek appreaen
(New) Keynesian Demand Management		I Theory of Money Risk (premium) management
Stimulate aggregate consumption Substitution effect		Alleviate balance sheet constraints Income/wealth effect
Woodford	Tobin (1982)	BruSan
Price stickiness Perfect capital markets	Both	Financial Frictions Incomplete markets
Representative Agent	Heterogeneous Agents	
Cut i Reduces r due to price stickiness Consumption c rises	Cut i Changes bond prices Redistributes from low MPC to high MPC consumers	Cut i Changes asset prices Ex-post: Redistributes to balance sheet impaired sector QE

Monetary Policy Transmission Channel

<u> </u>	· ·	1 1
(New) Keynesian Demand Management		I Theory of Money Risk (premium) management
Stimulate aggregate consumption Substitution effect		Alleviate balance sheet constraints Income/wealth effect
Woodford	Tobin (1982)	BruSan
Price stickiness Perfect capital markets	Both	Financial Frictions Incomplete markets
Representative Agent	Heterogeneous Agents	
Cut i Reduces r due to price stickiness Consumption c rises	Cut i Changes bond prices Redistributes from low MPC to high MPC consumers	Cut <i>i</i> Changes asset prices Ex-post: Redistributes to balance sheet impaired sector QE - US: QE1 & QE3: MBS
		- Japan 1990: corporate bonds

Overview

- No monetary economics
 - Fixed outside money supply
 - Amplification/endogenous risk through
 - Liquidity spiral asset side of intermediaries' balance sheet
 - Disinflationary spiral liability side
- Monetary policy
 - Wealth shifts by affecting relative price between
 - Long-term bond
 - Short-term money
 - Risk transfers reduce endogenous <u>aggregate</u> risk
- Macroprudential policy
 - Directly affect portfolio positions

MacroPru

- MacroPru complements MoPo
 - Not substitutes
- Good MacroPru enables more aggressive MoPo
 - More redistribution ex-post
 - More risk-transfers/insurance ex-ante
 - Lower q
 - reduces cost to repurchase capital after shock
 - Lowers importance of idiosyncratic shocks

MacroPru policy

- Regulator can control
 - Portfolio choice ψ s, xs

- cannot control
- investment decision $\iota(q)$
- ullet consumption decision c

of intermediaries and households

MacroPru policy

- Regulator can control
 - Portfolio choice ψ s, xs

- cannot control
- investment decision $\iota(q)$
- ullet consumption decision $\it c$

of intermediaries and households

ullet De-facto controls q and p within some range

distorts

- ullet De-factor controls wealth share η
 - Force agents to hold certain assets and generate capital gains
- In sum, regulator maximizes sum of agents value function
 - Choosing ψ^b , q, η

MacroPru policy: Welfare frontier

Brunnermeier & Sannikov

Conclusion

- Unified macro "Money and Banking" model to analyze
 - Financial stability Liquidity spiral
 - Monetary stability Fisher disinflation spiral
- Exogenous risk &
 - Sector specific
 - idiosyncratic
- Endogenous risk
 - Time varying risk premia flight to safety
- Capitalization of intermediaries is key state variable "paradox of Prudence"
- Monetary policy rule
 - Risk transfer to undercapitalized critical sectors
 - Income/wealth effects are crucial instead of substitution effect
 - Reduces endogenous risk better aggregate risk sharing
 - Self-defeating in equilibrium excessive idiosyncratic risk taking
- Macro-prudential policies
 - MacroPru + MoPo to achieve superior welfare optimum

■ Flipped Classroom Experience

Series of 4 YouTube videos, each about 10 minutes YouTube channel: Markus.economicus

Brunnermeier & Sannikov