The I Theory of Money
&
On the Optimal Inflation Rate
Markus Brunnermeier & Yuliy Sannikov
“Money and Banking” (in macro-finance)

- Money → store of value/safe asset
“Money and Banking” (in macro-finance)

- Money → store of value/safe asset
- Banking → “diversifier”
 holds risky assets, issues inside money

- Value of capital declines due to fire-sales
- Liquidity spiral
- Flight to safety
 - Value of money rises
 Disinflation spiral a la Fisher
- Demand for money rises
 - less idiosyncratic risk is diversified
- Supply for inside money declines
 - less creation by intermediaries
- Endogenous money multiplier = f(capitalization of critical sector)
- Paradox of Thrift (in risk terms)

- Monetary Policy (redistributive)
“Money and Banking” (in macro-finance)

- **Money** → store of value/safe asset
- **Banking** → “diversifier”
 holds risky assets, issues inside money

Amplification/endogenous risk dynamics
- Value of capital declines due to fire-sales **Liquidity spiral**
 - Flight to safety
- Value of money rises **Disinflation spiral** *a la Fisher*
 - Demand for money rises – less idiosyncratic risk is diversified
 - Supply for inside money declines – less creation by intermediaries
 - Endogenous money multiplier = f(capitalization of critical sector)

- Paradox of Thrift (in risk terms)
“Money and Banking” (in macro-finance)

- Money: store of value/safe asset
- Banking: “diversifier” holds risky assets, issues inside money

Amplification/endogenous risk dynamics

- Value of capital declines due to fire-sales
 - Flight to safety

- Value of money rises
 - Demand for money rises – less idiosyncratic risk is diversified
 - Supply for inside money declines – less creation by intermediaries
 - Endogenous money multiplier = f(capitalization of critical sector)

- Liquidity spiral
- Disinflation spiral a la Fisher

- Paradox of Prudence
- Paradox of Thrift (in risk terms)
“Money and Banking” (in macro-finance)

- Money: store of value/safe asset
- Banking: "diversifier" holds risky assets, issues inside money

Amplification/endogenous risk dynamics:
- Value of capital declines due to fire-sales **Liquidity spiral**
 - Flight to safety
- Value of money rises **Disinflation spiral** a la Fisher
 - Demand for money rises – less idiosyncratic risk is diversified
 - Supply for inside money declines – less creation by intermediaries
 - Endogenous money multiplier = f(capitalization of critical sector)

- Paradox of Prudence
- Paradox of Thrift (in risk terms)

- Monetary Policy (redistributive)
Some literature

- Roles of money
 - Unit of account
 - Medium of exchange (Clower, Lagos & Wright)
 - Store of value (Samuelson, Bewley, Aiyagari, Scheinkman & Weiss, Kiyotaki & Moore)

- Models without inside money imply inflation in downturns
 - Less money needed to perform fewer transactions

- “Money view” (Friedman & Schwartz)
 - Downturns ➔ Bank liabilities decrease

- “Credit view”
 - Downturns ➔ equity capital ➔ bank cuts assets/credit
 - BGG, Kiyotaki & Moore, He & Krishnamurthy, BruSan2014, Drechsler, Jeanne & Korinek, Savov & Schnabl

- Financial Stability
 - Diamond & Rajan 2010, Curdia & Woodford 2010, Stein 2012
Monetary Policy Transmission Channel

- **Consumption Boost approach to “Bottleneck approach”**

<table>
<thead>
<tr>
<th>(New) Keynesian Demand Management</th>
<th>I Theory of Money Risk (premium) management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulate aggregate consumption</td>
<td>Alleviate balance sheet constraints</td>
</tr>
<tr>
<td>Substitution effect</td>
<td>Income/wealth effect</td>
</tr>
<tr>
<td>Woodford</td>
<td>Tobin (1982)</td>
</tr>
<tr>
<td>Price stickiness</td>
<td>Both</td>
</tr>
<tr>
<td>Perfect capital markets</td>
<td>Financial Frictions</td>
</tr>
<tr>
<td></td>
<td>Incomplete markets</td>
</tr>
<tr>
<td>Representative Agent</td>
<td>Heterogeneous Agents</td>
</tr>
<tr>
<td>Cut (i)</td>
<td></td>
</tr>
<tr>
<td>Reduces (r) due to price</td>
<td></td>
</tr>
<tr>
<td>stickiness</td>
<td></td>
</tr>
<tr>
<td>Consumption (c) rises</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Monetary Policy Transmission Channel

- **Consumption Boost approach to “Bottleneck approach”**

<table>
<thead>
<tr>
<th>(New) Keynesian Demand Management</th>
<th>Theory of Money Risk (premium) management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulate aggregate consumption</td>
<td>Alleviate balance sheet constraints</td>
</tr>
<tr>
<td>Substitution effect</td>
<td>Income/wealth effect</td>
</tr>
<tr>
<td>Woodford</td>
<td>Tobin (1982)</td>
</tr>
<tr>
<td></td>
<td>BruSan</td>
</tr>
<tr>
<td>Price stickiness</td>
<td>Both</td>
</tr>
<tr>
<td>Perfect capital markets</td>
<td>Financial Frictions</td>
</tr>
<tr>
<td></td>
<td>Incomplete markets</td>
</tr>
<tr>
<td>Representative Agent</td>
<td>Heterogeneous Agents</td>
</tr>
<tr>
<td>Cut i</td>
<td>Cut i</td>
</tr>
<tr>
<td>Reduces r due to price stickiness</td>
<td>Changes bond prices</td>
</tr>
<tr>
<td>Consumption c rises</td>
<td>Redistributions from low MPC consumers</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Monetary Policy Transmission Channel

- **Consumption Boost approach to “Bottleneck approach”**

<table>
<thead>
<tr>
<th>(New) Keynesian Demand Management</th>
<th>I Theory of Money Risk (premium) management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulate aggregate consumption</td>
<td>Alleviate balance sheet constraints</td>
</tr>
<tr>
<td>Substitution effect</td>
<td>Income/wealth effect</td>
</tr>
<tr>
<td>Woodford</td>
<td>Tobin (1982)</td>
</tr>
<tr>
<td>Tobin (1982)</td>
<td>BruSan</td>
</tr>
<tr>
<td>Price stickiness</td>
<td>Both</td>
</tr>
<tr>
<td>Perfect capital markets</td>
<td>Financial Frictions</td>
</tr>
<tr>
<td></td>
<td>Incomplete markets</td>
</tr>
<tr>
<td>Representative Agent</td>
<td>Heterogeneous Agents</td>
</tr>
<tr>
<td>Cut i</td>
<td>Cut i</td>
</tr>
<tr>
<td>Reduces r due to price stickiness</td>
<td>Changes bond prices</td>
</tr>
<tr>
<td>Consumption c rises</td>
<td>Redistributions from low MPC to high MPC consumers</td>
</tr>
<tr>
<td></td>
<td>Ex-post: Redistributions</td>
</tr>
<tr>
<td></td>
<td>QE</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
Literature

- Without intermediaries: Money as store of value = bubble

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>deterministic</td>
<td>endowment risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>borrowing constraint</td>
</tr>
<tr>
<td>Only money</td>
<td>Samuelson</td>
<td>Bewley</td>
</tr>
<tr>
<td>With capital</td>
<td>Diamond</td>
<td>Aiyagari</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Angeletos</td>
</tr>
</tbody>
</table>

Risk tied up with individual capital
Literature

- Without intermediaries: Money as store of value = bubble

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>deterministic</td>
<td>endowment risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>borrowing constraint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Only money</th>
<th>Samuelson</th>
<th>Bewley</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>With capital</th>
<th>Diamond</th>
<th>Aiyagari</th>
<th>Angeletos $q = 1$</th>
</tr>
</thead>
</table>

depends on price of capital q
Literature

- Without intermediaries: Money as store of value = bubble

<table>
<thead>
<tr>
<th>Friction</th>
<th>OLG</th>
<th>Incomplete Markets + idiosyncratic risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>deterministic</td>
<td>endowment risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>investment risk</td>
</tr>
<tr>
<td></td>
<td></td>
<td>borrowing constraint</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Only money</th>
<th>Samuelson</th>
<th>Bewley</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Basic “I Theory”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>With capital</th>
<th>Diamond</th>
<th>Aiyagari</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>cash flow shock</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pecuniary externality</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inefficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inefficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$r > r^, K < K^$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$r < r^, K > K^$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$f'(k^) = r^$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dynamic inefficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$r < r^, K > K^$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inefficiency</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$r > r^, K < K^$</td>
</tr>
</tbody>
</table>

(money) bubbles if $r < g$

Abel et al. vs. Geerolf

$r^m = g$
Roadmap

- Model without intermediaries
 - Fixed (outside) money supply
 - Optimal money growth rate
 - “On the optimal inflation rate” (inflation target)

- Model with intermediaries
 - Fixed outside money supply
 - Monetary Policy
 - Macro-prudential policy

- Intermediaries with market power
 - The “Reversal Interest Rate: The Effective Lower Bound”
Model without intermediaries

- Technologies α

- Each household can only operate one firm
 - Physical capital
 \[
 \frac{dk_t}{kt} = (\Phi(t) - \delta)dt + \sigma^a dZ^a_t + \sigma d\tilde{Z}^a_t
 \]
 - Output
 \[
 y_t = Ak_t
 \]

- Demand for money
Adding outside money

- $q_t K_t$ value of physical capital
- $p_t K_t$ value of outside money

Each household can only operate one firm

- Physical capital
 \[
 \frac{dk_t}{k_t} = (\Phi(t_t) - \delta) dt + \sigma^a dZ^a_t + \tilde{\sigma} d\tilde{Z}^a_t
 \]
- Output
 \[
 y_t = A k_t
 \]

Demand for money

Technologies a

Outside Money

Money

Net worth

Sector idiosyncratic risk
1. Postulate
 - Price processes \(\frac{dp_t}{p_t} = \mu_t^p dt + \sigma^p dZ_t \), \(\frac{dq_t}{q_t} = \cdots \)
 - Portfolio processes \(\frac{dx_t^a}{x_t^a} \)

2. Derive return processes
 - \(dr^{Ka} = \cdots \)
 - \(dr^M = \cdots \)

3. Optimality conditions & Market clearing conditions

4. Solve “undetermined coefficients” \((\mu^x(s_t), \sigma^x(s_t)) \)
 - Solving ODE with boundary conditions
 - Solve for constants \(p, q \)

money supply growth rate that is NOT distributed via interest payment
Set \(\mu^{Mi} = 0 \)
Solving

1. Postulate
 - Price processes
 \[p_t \frac{d}{dt} p_t = \mu_t dt + \sigma_t dZ_t, \]
 - Portfolio processes
 \[x_t^a \]

2. Derive return processes
 - \[dr^K_a = (\Phi_i - \delta) dt + \frac{A_i}{q} dt + \tilde{\sigma} d\tilde{Z}_t \]
 - \[dr^M = (\Phi_i - \delta) dt - (\mu^M - \mu^{Mi}) dt \]
 money supply growth rate that is NOT distributed via interest payment
 Set \(\mu^{Mi} = 0 \)

3. Optimality conditions & Market clearing conditions

4. Solve “undetermined coefficients” \((\mu^x(s_t), \sigma^x(s_t)) \)
 - Solving ODE with boundary conditions
 - Solve for constants \(p, q \)
Optimality (=) for $E \left[\int_0^\infty e^{-\rho t} \log c_t \, dt \right]$

- Investment rate, ι

- Portfolio choice, x^a

- Consumption, c_t
Optimality (=)

- **Investment rate, \(\iota \)**
 - Tobin’s q: \[\Phi'(\iota) = \frac{1}{q} \] (static problem)
 - For \(\Phi(\iota) = \frac{1}{\kappa} \log(\kappa \iota + 1) \Rightarrow \kappa \iota = q - 1 \)

- **Portfolio choice, \(x^a \)**

- **Consumption, \(c_t \)**
Optimality (=)

- **Investment rate, \(\ell \)**
 - Tobin’s q: \(\Phi'(\ell) = \frac{1}{q} \) (static problem)
 - For \(\Phi(\ell) = \frac{1}{k} \log(\kappa \ell + 1) \Rightarrow \kappa = q - 1 \)

- **Portfolio choice, \(x^a \)**
 - \(E[dr^K - dr^M]/dt = \text{Cov}[dr^K - dr^M, \frac{dnt}{nt}] = x^a (\bar{\sigma})^2 \)

 \[
 x^a = E[dr^K - dr^M]/dt = \frac{(A-i)/q + \mu^M}{(\bar{\sigma})^2}
 \]
 - Dividend yield on capital must be \(\rho \)

- **Consumption, \(c_t \)**
Optimality (=)

- **Investment rate, \(\lambda \)**
 - Tobin's q: \(\Phi'(\lambda) = \frac{1}{q} \) (static problem)
 - For \(\Phi(\lambda) = \frac{1}{\kappa} \log(\kappa \lambda + 1) \Rightarrow \kappa \lambda = q - 1 \)

- **Portfolio choice, \(x^a \)**
 - \(E[dr^K - dr^M]/dt = Cov[dr^K - dr^M, \frac{dnt}{nt}] = x^a (\bar{\sigma})^2 \)
 - \(x^a = \frac{E[dr^K - dr^M]/dt}{(\bar{\sigma})^2} = \frac{dr^M + x^a(dr^K - dr^M)}{(A - \lambda)/q + \mu^M} \)
 - Dividend yield on capital must be \(\rho \)

- **Consumption, \(c_t \)**
 - Demand \(\rho N_t = \rho (q + \rho)K_t \)
Optimality (=) & market clearing (=)

- **Investment rate, \(\ell \)**
 - Tobin’s q: \(\Phi'(\ell) = \frac{1}{q} \) (static problem)
 - For \(\Phi(\ell) = \frac{1}{\kappa} \log(\kappa \ell + 1) \Rightarrow \kappa \ell = q - 1 \)

- **Portfolio choice, \(x^a \)**
 - \(E[dr^{Ka} - dr^M]/dt = Cov[dr^{Ka} - dr^M, \frac{dn_t}{n_t}] = x^a(\bar{\sigma})^2 \)
 - \(x^a = \frac{E[dr^{Ka} - dr^M]/dt}{(\bar{\sigma})^2} = \frac{(A-\ell)/q + \mu^M}{(\bar{\sigma})^2} = \frac{q}{q+p} \)
 - Dividend yield on capital must be \(\rho \)

- **Consumption, \(c_t \)**
 - Demand \(\rho N_t = \rho (q + p)K_t = (A - \ell)K_t \) Supply
 - \(q = \left(\frac{q}{q + p} \right) (A - \ell)/\rho = x^a \)
Equilibrium

<table>
<thead>
<tr>
<th>Moneyless equilibrium</th>
<th>Money equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_0 = 0)</td>
<td>(p = \frac{\bar{\sigma} - \sqrt{\rho}}{\sqrt{\rho}}q)</td>
</tr>
<tr>
<td>(q_0 = \frac{\kappa A + 1}{\kappa \rho + 1})</td>
<td>(q = \frac{\kappa A + 1}{\kappa \sqrt{\rho} \bar{\sigma} + 1})</td>
</tr>
</tbody>
</table>

![Graph showing the relationship between \(p \), \(q \), \(\rho \), and \(\bar{\sigma} \)]
Welfare analysis

<table>
<thead>
<tr>
<th>Moneyless equilibrium</th>
<th>Money equilibrium</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_0 = 0)</td>
<td>(p = \frac{\bar{\sigma} - \sqrt{\rho}}{\sqrt{\rho}} q)</td>
</tr>
<tr>
<td>(q_0 = \frac{\kappa A + 1}{\kappa \rho + 1})</td>
<td>></td>
</tr>
<tr>
<td>(g_0)</td>
<td>></td>
</tr>
<tr>
<td>(\text{welfare}_0)</td>
<td><</td>
</tr>
<tr>
<td></td>
<td>(g)</td>
</tr>
<tr>
<td></td>
<td>(\text{welfare})</td>
</tr>
</tbody>
</table>
Roadmap

- Model **without intermediaries**
 - Fixed (outside) money supply
 - Optimal **money growth rate**
 - “On the optimal inflation rate” (inflation target)

- Model with intermediaries
 - Fixed outside money supply
 - Monetary Policy
 - Macro-prudential policy

- Intermediaries with market power
 - The “Reversal Interest Rate: The Effective Lower Bound”
Equilibrium

- Collecting the three equations:

\[q = 1 + \kappa \iota^* \]
\[\rho(p + q) = A - \iota^* \]
\[\frac{\sigma^2}{q + p} = A - \iota^* + q\mu \]

- Equilibrium solved in terms of \(\hat{\mu} := x^\kappa \mu \) (monotone transformation)

\[p = \frac{\sigma(1 + \kappa \rho)}{\sqrt{\rho + \hat{\mu}}} - (1 + \kappa A) \]
\[q = 1 + \kappa A - \frac{\kappa \rho \sigma}{\sqrt{\rho + \hat{\mu}}} \]
\[\iota^* = A - \rho \frac{\sigma}{\sqrt{\rho + \hat{\mu}}} \]

Closed form!
Welfare

- Plug in FOC in value function
- Plug in equilibrium
- All households start symmetrically

- Expected Utility of an individual household

$$V = V_0 + \frac{1}{\kappa} \log \left(1 + \kappa A - \frac{\kappa \rho \sigma}{\sqrt{\rho + \mu}}\right) - \delta + \rho - \frac{1}{2}(\rho + \hat{\mu}) + \frac{\log \left(\frac{\sigma}{\sqrt{\rho + \mu}}\right)}{\rho}.$$
Optimal inflation rate

- Money growth μ affects (steady state) inflation in two ways:
 $\pi = \mu^M - \left(\Phi(i^*(\mu^M)) \right) - \delta \right)$

- Proposition:
 - If $\frac{\sigma}{\sqrt{\rho}} > \frac{2(A\kappa + 1)}{1 + 2\kappa \rho}$, welfare maximizing money growth rate $\mu^* > 0$.
 - Market outcome is not even constrained Pareto efficient
 - Economic growth rate, $g > r^m$, is also higher
 - Growth maximizing $\mu^g \geq \mu^M$, s.t. $p^g = 0$, Tobin (1965)
 $i^* = A - \rho \frac{\sigma}{\sqrt{\rho + \hat{\mu}}}$ increasing in $\hat{\mu}$

- Corollary: No super-neutrality of money
 - Nominal money growth rate affects real economy
 - No price/wage rigidity, no monopolistic competition
Proposition: (comparative static)

- μ^M does not depend on depreciation rate δ, but inflation does.
- μ^M is strictly increasing in idiosyncratic risk σ

“Emerging markets should have higher inflation target”
Main results

- HH portfolio choice
 - Physical capital: w/ idiosyncratic risk + dividend
 - Money: w/o idiosyncratic risk + no dividend (bubble)
 - Tilted inefficiently towards money

- Money supply growth ⇒ inflation ⇒ “tax on money”
- ⇒ lowers real interest rate ⇒ tilts portfolio choice
- ⇒ boosts physical investment ⇒ higher economic growth
- ⇒ raises real interest rate (partially undoes inflation tax)

- Pecuniary externality:
 - individual households do not take this GE effect into account.
 - Planner who can print money and distribute seignorage can improve growth + Pareto welfare.

- Derive optimal money growth rate/inflation rate
Roadmap

- Model without intermediaries
 - Fixed (outside) money supply
 - Optimal money growth rate
 - “On the optimal inflation rate” (inflation target)

- Model with intermediaries
 - Fixed outside money supply
 - Monetary Policy
 - Macro-prudential policy
Outline of two sector model

- Technologies b
 - Households have to
 - Specialize in one subsector for one period
 \[
 \frac{dk_t}{k_t} = \ldots dt + \sigma^b dZ^b_t + \tilde{\sigma} d\tilde{Z}^b_t
 \]
 - Demand for money

- Technologies a
 - Sector specific + idiosyncratic risk
 \[
 \frac{dk_t}{k_t} = \ldots dt + \sigma^a dZ^a_t + \tilde{\sigma} d\tilde{Z}^a_t
 \]
Add outside money

- Technologies b

- Technologies a

Households have to
- Specialize in one subsector for one period
- Demand for money
Add intermediaries

- Technologies b

 - Risk can be partially sold off to intermediaries

- Technologies a

 - Risk is not contractable (Plagued with moral hazard problems)
Add intermediaries

- Technologies b
 - Intermediaries
 - Can hold outside equity & diversify within sector b
 - Monitoring

- Technologies a
Add intermediaries

- Technologies b
 - Intermediaries
 - Can hold outside equity & diversify within sector b
 - Monitoring

- Technologies a
 - Net worth
 - Money
 - Inside equity
 - Risky Claim
 - Outside Money

B_1
Add intermediaries

- Technologies b

- Intermediatearies
 - Can hold outside equity & diversify within sector b
 - Monitoring
 - Create inside money
 - Maturity/liquidity transformation

- Technologies a
Shock impairs assets: 1st of 4 steps

- Technologies b
- Technologies a
Shrink balance sheet: 2nd of 4 steps

- Technologies b
- Technologies a

“Paradox of Prudence”
Liquidity spiral: asset price drop: 3^{rd} of 4

- Technologies b

- Technologies a

Switch
Disinflationary spiral: 4th of 4 steps

- Technologies \(b \)
- Technologies \(a \)
... after an adverse shock

- Intermediaries are hit and shrink their balance sheets inducing
 - Asset side: liquidity spiral
 - Liability side: disinflation spiral

- Response of intermediaries to adverse shock leads to endogenous risk
 - Amplification
 - Persistence

- Other sectors can also be undercapitalized
 - Japan 1980: corporate sector
 - US 2000s: household sector
Formal model: capital & output

Technologies

Physical capital K_t
- Capital share

$Y_t = \psi_t K_t$

Output goods

Aggregate good (CES)
- Consumed or invested
- Numeraire

$Y_t = \frac{1}{2}(Y_t^b)^{(s-1)/s} + \frac{1}{2}(Y_t^a)^{(s-1)/s} \left(\frac{s}{s-1}\right)$

Price of goods

b

$Y_t^b = Ak_t^b$

a

$Y_t^a = Ak_t^a$

$P_t^b = \frac{1}{2} \left(\frac{Y_t}{Y_t^b}\right)^{1/s}$

$P_t^a = \frac{1}{2} \left(\frac{Y_t}{Y_t^a}\right)^{1/s}$

Model setup in paper is more general: $Y_t = A(\psi_t)K_t$
Formal model: risk

- When k_t is employed in sector a by agent j

$$
dk_t = (\Phi(\lambda_t) - \delta)k_t dt + \sigma^a_k k_t dZ_t^a + \sigma^j k_t d\tilde{Z}_t^a
$$

 - Investment rate (per unit of k_t)
 - $\Phi(\lambda_t)$ is increasing and concave, e.g. $\log[(\kappa \lambda_t + 1) / \kappa]$
 - All dZ are independent of each other

- Intermediaries can diversify within sector b
 - Face no idiosyncratic risk

- Households cannot become intermediaries or vice versa
Financing constraints

Technologies

Equity issuance
- Special case

\[\chi_t \geq \chi \]
\[\chi = 0\% \text{ (no inside equity)} \]

Households’ risk

Intermediaries’ risk

\[dZ^b \& d\tilde{Z}^b \]
sector & idiosyncratic

\[dZ^b \]
can diversify
idiosyncratic risk

\[dZ^a \& d\tilde{Z}^a \]
sector & idiosyncratic

- Inside equity only
Capital/risk shares

- Technologies b

 - Inside equity
 - Risky Claim
 - $\psi_t q_t K_t$
 - $1 - \chi_t$ χ_t

- Technologies a

 - Fraction α_t of HH

 - Inside Money (deposits)
 - $\chi_t \psi_t q_t K_t$
 - Net worth N_t
 - $(1 - \psi_t) q_t K_t$
 - HH Net worth
Formal model: preferences

- All agents have logarithmic utility with discount rate ρ

$$E \left[\int_0^\infty e^{-\rho t} \log c_t \, dt \right]$$

- Implies
 - Consumption $= \rho \times$ net worth
 - Equilibrium Sharpe ratio \propto Covariance with net worth
Solution steps

1. Postulate endogenous processes
 • \[\frac{dq_t}{q_t} = \mu_t^q dt + \sigma_t^{q,a} dZ_t^a + \sigma_t^{q,b} dZ_t^b \]
 - Returns from holding capital
 • \[\frac{dp_t}{p_t} = \mu_t^p dt + \sigma_t^{p,a} dZ_t^a + \sigma_t^{p,b} dZ_t^b \]

2. Equilibrium conditions
 • Agents’ optimization
 ▪ Internal investment (new capital formation)
 ▪ Optimal portfolio choice Sharpe ratio \(\propto \) Cov. with net worth
 ▪ Optimal consumption \(\rho \) * networth
 • Market clearing conditions

3. Law of motion of state variable
 • wealth (share) distribution \(\eta_t \)

4. Express in ODEs of state variable
Asset returns on technology b

- Physical capital: (in technology b) also earns dividend yield

 - If $dq_t/q_t = \mu_t^q dt + (\sigma_t^q)^T dZ_t$,

 - $dk_t/k_t = (\Phi(\iota_t) - \delta)dt + \sigma^b dZ_t^b + \widetilde{\sigma}^j dZ_t^{b,j}$
Asset returns on technology b

- **Physical capital**: (in technology b) also earns dividend yield

 - $dq_t/q_t = \mu_t^q dt + (\sigma_t^q)^T dZ_t$,

 - $dk_t/k_t = (\Phi(\iota_t) - \delta) dt + \sigma^b dZ_t^b + \tilde{\sigma}^j dZ_t^{b,j}$

 - $dr_t^b = \frac{AP_t^b - \iota_t}{q_t} dt + (\Phi(\iota_t) - \delta + \mu_t^q + (\sigma_t^q)^T \iota^1 b) dt + (\sigma_t^q + \sigma^a 1^b)^T dZ_t + \tilde{\sigma}^j dZ_t^{b,j}$

 Dividend yield, Expected capital gains
Asset returns on technology b

- Physical capital: (in technology b) also earns dividend yield

 - $dq_t/q_t = \mu_t^q dt + (\sigma_t^q)^T dZ_t$
 - $dk_t/k_t = (\Phi(\iota_t) - \delta)dt + \sigma^b dZ^b_t + \tilde{\sigma}^j dZ^{b,j}_t$

 - $dr^b_t = \frac{AP_t^{b-\iota_t}}{q_t}dt + (\Phi(\iota_t) - \delta + \mu_t^q + (\sigma_t^q)^T \sigma^1)^T dZ_t + \tilde{\sigma}^j dZ^{b,j}_t$
 - $dr^a_t = \ldots$ (analogous)

- Return on outside equity held by intermediaries

 - $dr^I_t = dr^b_t - \lambda_t dt$

- Return on inside equity (fraction χ_t) held by b-HH

 - $dr^\chi_t = dr^b_t + \frac{1-\chi_t}{\chi_t} \lambda_t dt$
Asset returns on money

- **Money**: fixed supply in baseline model, total value p_tK_t
 - Return = capital gains (no dividend/interest in baseline model)
 - If $dp_t/p_t = \mu^p_t \, dt + \sigma^p_t \, dZ_t$,
 - $dK_t/K_t = (\Phi(\iota_t) - \delta) \, dt + \left(1 - \psi_t\right) \sigma^a \, dZ^a_t + \psi_t \sigma^b \, dZ^b_t$
 - $\Phi(\iota_t)$
 - σ^a, σ^b
 - $(\sigma^K_T) dZ_t$
 - $dr^M_t = \left(\Phi(\iota_t) - \delta + \mu^p_t + (\sigma^p_t)^T \sigma^K_t\right) \, dt + (\sigma^p_t + \sigma^K_t) \, dZ_t$

- $\vartheta_t = \frac{p_t}{q_t + p_t}$ fraction of wealth in form of money
Equilibrium is a map

Histories of shocks $\{Z_\tau, 0 \leq \tau \leq t\}$

prices q_t, p_t, λ_t, allocation α_t, χ_t & portfolio weights (x_t, x^a_t, x^b_t)

wealth distribution

$$\eta_t = \frac{N_t}{(p_t+q_t)K_t} \in (0,1)$$

intermediaries’ wealth share

• All agents maximize utility
 ▪ Choose: portfolio, consumption, technology

• All markets clear
 ▪ Consumption, capital, money, outside equity of b
Numerical example: prices

- **Disinflation spiral**
- **Liquidity spiral**
Numerical example: prices

Disinflation spiral

\[\theta = \frac{p}{p+q} \]
Numerical example: dynamics of η

$$\sigma_t = \frac{x_t \left(\sigma^b 1^b - \sigma^K_t \right)}{1 - \left(\frac{x_t}{1-\vartheta_t} \right)^{1-\vartheta'(\eta_t)} / \eta_t}$$

fundamental volatility
leverage
elasticity
amplification

Steady state
Numerical example: dynamics of η
Welfare analysis

- **Challenge:** Heterogeneous agents with idiosyncratic risks
- **Inefficiencies in**
 - Production
 - Investment
 - Risk sharing

\[
\log(\rho \eta)/\rho + U^I(\eta) \\
\log(\rho(1 - \eta))/\rho + U^H(\eta)
\]

Household welfare in autarky
Roadmap

- Model without intermediaries
 - Fixed (outside) money supply
 - Optimal money growth rate
 - “On the optimal inflation rate” (inflation target)

- Model with intermediaries
 - Fixed outside money supply - Amplification/endogenous risk
 - Liquidity spiral asset side of intermediaries’ balance sheet
 - Disinflationary spiral liability side

- Monetary Policy
- Macro-prudential policy

- Intermediaries with market power
 - The “Reversal Interest Rate: The Effective Lower Bound”
Money view

- Restore money supply
 - Replace missing inside money with outside money
- Aim: Reduce deflationary spiral
 - ... but banks extent less credit & diversify less idiosyncratic risk away
 - ... as households have to hold more idiosyncratic risk, money demand rises
 - Undershoots inflation target

Credit view

- Restore credit
- Aim: Switch off deflationary spiral & liquidity spiral
Monetary Policy

- Introduce long-term bond
- Central bank’s actions change money supply/transfer risk
 - Interest rate cuts in downturns raise the value of long-term bonds
 - Change relative price between long-term bond and short-term money
 - Risk transfer (ex-post redistribution)

Macro-prudential policy

1. Leverage upper bounds
2. Affect agents portfolio choice directly
Introducing Long-term Gov. Bond

- Introduce long-term (perpetual) bond
 - No default ... held by intermediaries in equilibrium

\[
\frac{dB_t}{B_t} = \mu_t^B dt + \sigma_t^B dZ_t
\]

Perpetual bonds:
- pay in money (at unit rate)
- endogenous price \(B_t \) (in money)

Value \(b_t K_t \)

Value \(p_t K_t \)

Value \(q_t K_t \)

- Value of long-term bond is endogenous
Redistributive MoPo: Ex-post perspective

- Adverse shock → value of risky claims drops
- Monetary policy
 - Interest rate cut ⇒ long-term bond price
 - Asset purchase ⇒ asset price
 - ⇒ “stealth recapitalization” - redistributive
 - ⇒ risk premia
- Liquidity & Deflationary Spirals are mitigated
Redistributive MoPo: Ex-post perspective

- Adverse shock → value of risky claims drops
- Monetary policy
 - Interest rate cut ⇒ long-term bond price
 - Asset purchase ⇒ asset price
 - ⇒ “stealth recapitalization” - redistributive
 - ⇒ risk premia
- Liquidity & Deflationary Spirals are mitigated
Monetary policy and endogenous risk

- Intermediaries’ risk (borrow to scale up)

\[
\sigma_t^\eta = \frac{x_t \left(1^b \sigma^b - \sigma^K_t \right)}{1 + \left(\frac{x_t \psi_t - \eta_t}{\eta_t} \right) \frac{\vartheta'(\eta_t)}{\vartheta/\eta_t} - \left(x_t + \vartheta t \frac{1 - \eta_t}{\eta_t} \right) \frac{b_t}{p_t} \frac{B'(\eta_t)}{B(\eta_t)/\eta_t}}
\]

- MoPo works through \[\frac{B'(\eta_t)}{B(\eta_t)/\eta_t} \]
 - with right monetary policy bond price \(B(\eta) \) rises as \(\eta \) drops “stealth recapitalization”
 - Switch off liquidity and disinflationary spiral

- Example:
 Remove amplification s.t. \[\sigma_t^\eta = x_t \left(1^b \sigma^b - \sigma^K_t \right) \]
Numerical example with monetary policy

- Prices

q is more stable

p less disinflation
Numerical example with monetary policy

- Drift and volatility of η

![Graph showing drift and volatility of η]
Observations

- As interest rates are cut in downturns, bonds held by intermediaries appreciate, this
 - protects intermediaries against shocks
 - increases the supply of assets that can be used as storage (weakens disinflation)

- Ex-post stabilization
 - Liquidity spiral
 - Disinflationary spiral

- Ex-ante
 - Higher leverage
 - (shift in steady state)
Monetary policy ... in the limit

- full risk sharing of all aggregate risk

\[\sigma_t^\eta = \frac{x_t(1^b \sigma^b - \sigma^K_t)}{1 - \left(\frac{\psi \eta - \vartheta(\eta)}{\eta} + \left(1 - \vartheta\right)\frac{\psi \chi - \eta}{\eta} + \vartheta \frac{1 - \eta}{\eta}\right) \frac{b_t - B'(\eta)}{p_t B(\eta) / \eta} - \infty} \]

- \(\eta \) is deterministic and converges over time towards 0
Monetary policy: 3 versions

- No MoPo
- No Amplification
- Aggregate risk sharing
Monetary Policy Transmission Channel

- Consumption Boost approach to “Bottleneck approach”

<table>
<thead>
<tr>
<th>(New) Keynesian Demand Management</th>
<th>I Theory of Money Risk (premium) management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulate aggregate consumption</td>
<td>Alleviate balance sheet constraints</td>
</tr>
<tr>
<td>Substitution effect</td>
<td>Income/wealth effect</td>
</tr>
<tr>
<td>Woodford</td>
<td>Tobin (1982)</td>
</tr>
<tr>
<td>Price stickiness</td>
<td>Both</td>
</tr>
<tr>
<td>Perfect capital markets</td>
<td>Financial Frictions</td>
</tr>
<tr>
<td></td>
<td>Incomplete markets</td>
</tr>
<tr>
<td>Representative Agent</td>
<td>Heterogeneous Agents</td>
</tr>
<tr>
<td>Cut i</td>
<td></td>
</tr>
<tr>
<td>Reduces r due to price stickiness</td>
<td></td>
</tr>
<tr>
<td>Consumption c rises</td>
<td></td>
</tr>
</tbody>
</table>

Woodford, Tobin (1982), BruSan, Price stickiness, Perfect capital markets, Representative Agent, Heterogeneous Agents, Cut i, Reduces r due to price stickiness, Consumption c rises.
Monetary Policy Transmission Channel

- **Consumption Boost approach to “Bottleneck approach”**

<table>
<thead>
<tr>
<th>(New) Keynesian Demand Management</th>
<th>I Theory of Money Risk (premium) management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulate aggregate consumption</td>
<td>Alleviate balance sheet constraints</td>
</tr>
<tr>
<td>Substitution effect</td>
<td>Income/wealth effect</td>
</tr>
<tr>
<td>Woodford</td>
<td>Tobin (1982)</td>
</tr>
<tr>
<td>Price stickiness</td>
<td>Both</td>
</tr>
<tr>
<td>Perfect capital markets</td>
<td>Financial Frictions</td>
</tr>
<tr>
<td></td>
<td>Incomplete markets</td>
</tr>
<tr>
<td>Representative Agent</td>
<td>Heterogeneous Agents</td>
</tr>
<tr>
<td>Cut (i)</td>
<td>Cut (i)</td>
</tr>
<tr>
<td>Reduces (r) due to price stickiness</td>
<td>Changes bond prices</td>
</tr>
<tr>
<td>Consumption (c) rises</td>
<td>Redistributes from</td>
</tr>
<tr>
<td></td>
<td>low MPC to high MPC</td>
</tr>
<tr>
<td></td>
<td>consumers</td>
</tr>
</tbody>
</table>
Monetary Policy Transmission Channel

- Consumption Boost approach to “Bottleneck approach”

<table>
<thead>
<tr>
<th>(New) Keynesian Demand Management</th>
<th>I Theory of Money Risk (premium) management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulate aggregate consumption</td>
<td>Alleviate balance sheet constraints</td>
</tr>
<tr>
<td>Substitution effect</td>
<td>Income/wealth effect</td>
</tr>
<tr>
<td>Woodford</td>
<td>Tobin (1982)</td>
</tr>
<tr>
<td>Woodford</td>
<td>Tobin (1982)</td>
</tr>
<tr>
<td>Price stickiness</td>
<td>Both</td>
</tr>
<tr>
<td>Perfect capital markets</td>
<td>Financial Frictions</td>
</tr>
<tr>
<td></td>
<td>Incomplete markets</td>
</tr>
<tr>
<td>Representative Agent</td>
<td>Heterogeneous Agents</td>
</tr>
<tr>
<td>Cut i</td>
<td>Cut i</td>
</tr>
<tr>
<td>Reduces r due to price stickiness</td>
<td>Changes asset prices</td>
</tr>
<tr>
<td>Consumption c rises</td>
<td>Ex-post: Redistributes</td>
</tr>
<tr>
<td></td>
<td>to balance sheet impaired sector</td>
</tr>
<tr>
<td></td>
<td>QE</td>
</tr>
</tbody>
</table>

- Perfect capital markets
- Both
- Financial Frictions
- Incomplete markets
- Redistributes from low MPC to high MPC consumers
- QE
Monetary Policy Transmission Channel

- **Consumption Boost approach to “Bottleneck approach”**

<table>
<thead>
<tr>
<th>(New) Keynesian Demand Management</th>
<th>I Theory of Money Risk (premium) management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulate aggregate consumption</td>
<td>Alleviate balance sheet constraints</td>
</tr>
<tr>
<td>Substitution effect</td>
<td>Income/wealth effect</td>
</tr>
<tr>
<td>Woodford</td>
<td>Tobin (1982)</td>
</tr>
<tr>
<td>Price stickiness</td>
<td>Both</td>
</tr>
<tr>
<td>Perfect capital markets</td>
<td>Financial Frictions</td>
</tr>
<tr>
<td></td>
<td>Incomplete markets</td>
</tr>
<tr>
<td>Representative Agent</td>
<td>Heterogeneous Agents</td>
</tr>
<tr>
<td>Cut i</td>
<td>Cut i</td>
</tr>
<tr>
<td>Reduces r due to price stickiness</td>
<td>Changes asset prices</td>
</tr>
<tr>
<td>Consumption c rises</td>
<td>Ex-post: Redistributions</td>
</tr>
<tr>
<td></td>
<td>to balance sheet impaired sector</td>
</tr>
</tbody>
</table>

- QE
 - US: QE1 & QE3: MBS
 - Japan 1990: corporate bonds
Overview

- No monetary economics
 - Fixed outside money supply
 - Amplification/endogenous risk through
 - Liquidity spiral: asset side of intermediaries’ balance sheet
 - Disinflationary spiral: liability side

- Monetary policy
 - Wealth shifts by affecting relative price between
 - Long-term bond
 - Short-term money
 - Risk transfers – reduce endogenous aggregate risk

- Macroprudential policy
 - Directly affect portfolio positions
MacroPru

- MacroPru complements MoPo
 - Not substitutes

- Good MacroPru enables more aggressive MoPo
 - More redistribution ex-post
 - More risk-transfers/insurance ex-ante
 - Lower q
 - reduces cost to repurchase capital after shock
 - Lowers importance of idiosyncratic shocks
MacroPru policy

- Regulator can control
 - Portfolio choice $\psi s, x s$
 - Investment decision $\nu(q)$
 - Consumption decision c
- cannot control

of intermediaries and households
MacroPru policy

- Regulator can control
 - Portfolio choice ψ, x
- cannot control
 - investment decision $i(q)$
 - consumption decision c

 of intermediaries and households

- De-facto controls q and p within some range
- De-factor controls wealth share η
 - Force agents to hold certain assets and generate capital gains

- In sum, regulator maximizes sum of agents value function
 - Choosing ψ^b, q, η
MacroPru policy: Welfare frontier

- Stabilize intermediaries net worth and earnings
- Control the value of money to allow HH to insure idiosyncratic risk (investment distortions still exist, otherwise can get 1st best)
Conclusion

- Unified macro “Money and Banking” model to analyze
 - Financial stability - Liquidity spiral
 - Monetary stability - Fisher disinflation spiral

- Exogenous risk &
 - Sector specific
 - Idiosyncratic

- Endogenous risk
 - Time varying risk premia – flight to safety
 - Capitalization of intermediaries is key state variable

- Monetary policy rule
 - Risk transfer to undercapitalized critical sectors
 - Income/wealth effects are crucial instead of substitution effect
 - Reduces endogenous risk – better aggregate risk sharing
 - Self-defeating in equilibrium – excessive idiosyncratic risk taking

- Macro-prudential policies
 - MacroPru + MoPo to achieve superior welfare optimum
Flipped Classroom Experience

Series of 4 YouTube videos, each about 10 minutes
YouTube channel: Markus.economicus