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September 6, 2013

Notes prepared for Yuliy’s lectures at “Princeton Initiative:
Macro, Money and Finance,” based on work with Markus.1

The goal of this lecture is to

1. develop techniques of solving heterogeneous-agent economies with fi-
nancial frictions in continuous time and

2. address, through model elements, the concepts related to financial sta-
bility.

In particular, we will build models that can help us think about (1) under-
capitalized sectors, (2) endogenous risk, (3) tail risk, (4) asset illiquidity, (5)
endogenous leverage, (6) crisis probability, (7) inefficiencies of financial crises
and (8) the effects of policies.

Technically, an equilibrium is defined as a map from any history of macro
shocks to the current state of the economy, described by asset prices, asset
allocation, and the agents’ actions (production decisions, asset trades, etc).
Such a map is an equilibrium if

1. all agents behave to maximize utility and

2. markets clear.

1I’d like to thank Ji Huang and Greg Phelan for helpful comments regarding compu-
tation.
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The technical goal of this lecture is to translate these two sets of conditions
into an equilibrium characterization.

Conceptually, we will replicate two important results from the linearized
versions of classic models of Bernanke, Gertler and Gilchrist (1999) and Kiy-
otaki and Moore (1997), that (1) temporary macro shocks can have a per-
sistent effect on economic activity by making borrowers “undercapitalized”
and (2) price movements amplify shocks. We will also be able to take advan-
tage of the tractability that continuous time offers and study a host of new
properties of fully solved equilibria. In particular, we will observe that:

1. Endogenous risk is not the same at all times: it stays hidden in normal
times, but it materializes in crisis times. Thus, the dynamics of an
economy with financial frictions are highly nonlinear. Endogenous risk
is tail risk. Endogenous risk depends on the illiquidity of assets, and it
affects the severity of crises.

2. The leverage of borrowers, who may become undercapitalized, is en-
dogenous. It responds to the magnitude of fundamental (exogenous)
macro shocks and the level of financial innovations that enable better
risk management. Leverage responds to a much lesser extent to the
presence of endogenous tail risk. Equilibrium leverage in normal times
is a key determinant of the probability of crises.

Below, I start first with a particularly simple model to illustrate how
equilibrium conditions - utility maximization and market clearing - translate
into an equilibrium characterization. This simple model trivializes most of
the issues we are after, e.g. the model has no price effects or endogenous
risk. We do get some interesting takeaways, such as that risk premia spike
up in crises.

After establishing the conceptual framework for what an equilibrium is,
we move on to tackle more complex models.

A Simple Model.

This model is borrowed from Basak and Cuoco (1998). The economy has
a risky asset in positive net supply, and a risk-free asset in zero net supply.
There are two types of agents - experts and households. Only experts can
hold the risky asset - households can only lend to experts at the risk-free
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rate rt, determined endogenously in equilibrium. The friction is that experts
can finance their holdings of the risky asset only through debt - by selling
short the risk-free asset to households. That is, experts cannot issue equity.
We assume that all agents are small and behave as price-takers. That is,
unlike in market microstructure models with noise traders, agents have no
price impact.

In the aggregate, the risky asset pays dividend

dDt

Dt

= g dt+ σ dZt,

where g is the dividend growth rate, and Z is a standard Brownian mo-
tion. The price of the risky asset is also determined endogenously, and qt
denotes the price-to-dividend ratio. Thus, the aggregate value of all assets
in the economy is qtDt. If Nt is the aggregate net worth of experts, then the
aggregate net worth of households is qtDt −Nt.

For tractability, all agents are assumed to have logarithmic utility with
discount rate ρ, of the form

E
[∫ ∞

0
e−ρt log ct dt

]
,

where ct is consumption at time t. Logarithmic utility has two convenient
properties, which help reduce the number of equations that characterize equi-
librium. First, for agents with log utility

consumption = ρ · net worth (1)

That is, they always consume a fixed fraction of wealth regardless of the risk-
free rate or risky investment opportunities. Second, the allocation of wealth
between the risky and the risk-free asset is characterized by the equation

volatility of wealth = Sharpe ratio of risky investment, (2)

where the volatility of wealth is measured in percent.2

We use equations (1) and (2) to formalize equilibrium conditions, and
characterize equilibrium.

2For example, if the annual volatility of S&P 500 is 15% and the risk premium is 3% (so
that the Sharpe ratio is 3%/15% = 0.2), then a log utility agent wants to hold a portfolio
with volatility 0.2 = 20%. This corresponds to a weight of 1.33 on S&P 500, and -0.33 on
the risk-free asset.
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Definition. Given an initial allocation, an equilibrium is a map from
histories of macro shocks {Zs, s ≤ t} to the price of capital qt, risk-free rate
rt, as well as asset holdings and consumption choices of all agents, such that

1. agents choose consumption and portfolio allocation to maximize utility

2. and markets clear

To find an equilibrium, we need to write down equations that processes
qt, rt, etc. have to satisfy, and from those, characterize how these processes
evolve with the realizations of shocks Z. Usually, it is convenient to express
this relationship using a state variable, which describes the distribution of
wealth. A good state variable to use is the fraction of wealth owned by the
experts,

ηt =
Nt

qtDt

,

which takes values between 0 and 1. When ηt drops, experts become more
constrained, and so small values of ηt correspond to a crisis regime.

So, how can we solve for the equilibrium?

In two steps!

First, we use the equilibrium conditions, i.e. utility maximization and
market clearing, to write down equations that qt and rt need to satisfy. In
this simple model, we will be able to express the function q(ηt) and r(ηt) in
closed form. Second, we need to derive the law of motion of ηt, as a function
of the history of macro shocks {Zs, s ≤ t}. After these two steps, we’ll know
how macro shocks map to ηt, and how ηt maps to qt and rt.

Step 1: The Equilibrium Conditions. First, from condition (1), the
aggregate consumption of all agents is ρqtDt, and aggregate output is Dt.
From the clearing of the consumption goods market, these must be equal,
and so

qt =
1

ρ
. (3)

Of the total output, experts consume ρNt = ηtDt and households, (1−ηt)Dt.
Second, we can use condition (2) for experts to figure out the equilibrium

risk-free rate. We obtain the Sharpe ratio of risky investments from the
returns on risky and risk-free assets. We obtain the volatility of the experts’
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wealth from their balance sheets. Then we use equation (2) to get the risk-
free rate.

Because qt is constant, the risky asset earns the return of

drDt = 1/qt dt︸ ︷︷ ︸
ρ, dividend yield

+ g dt+ σ dZt︸ ︷︷ ︸
capital gains rate

,

and the risk-free asset earns rt so the Sharpe ratio of risky investment is

ρ+ g − rt
σ

.

Because experts must hold all the risky assets in the economy, with value
qtDt (households cannot hold them), and absorb risk through net worth Nt,
the volatility of their net worth is

qtDt

Nt

σ =
σ

ηt
.

Using (2),
σ

ηt
=
ρ+ g − rt

σ
⇒ rt = ρ+ g − σ2

ηt
. (4)

Step 2: The Law of Motion of ηt. To finish deriving the equilibrium,
we need to describe how shocks Z affect the state variable ηt = Nt/(qtDt).
To do this, we write down the laws of motion of Nt and qtDt separately, and
then use Ito’s lemma to derive the law of motion of ηt. We have,

dNt = qtDt dr
D
t︸ ︷︷ ︸

risky investment

+ (Nt − qtDt)rt dt︸ ︷︷ ︸
risk−free investment

− ρNt dt︸ ︷︷ ︸
consumption

, (5)

dDt = gDt dt+ σDt dZt ⇒ d
1

qtDt

= (−g+ σ2)
1

qtDt

dt− σ 1

qtDt

dZt. (6)

and so

dηt =
1

qtDt

dNt+Ntd

(
1

qtDt

)
+Cov

(
Nt,

1

qtDt

)
=

(1− ηt)2

ηt
σ2dt+(1−ηt)σdZt.

(7)

Observations. Variable ηt fluctuates with macro shocks - a positive
shock increases the relative wealth of experts, because experts are levered.
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A negative shock erodes ηt, and experts require a higher risk premium to
hold risky assets. Experts are convinced to keep holding risky assets by the
increasing Sharpe ratio

σ

ηt
=
ρ+ g − rt

σ
,

which goes to ∞ as ηt goes to 0. Strangely, in this simple model, this is
achieved through the risk-free rate rt = ρ + g − σ2/ηt going to −∞, rather
than through depressed prices of the risky asset. Because qt is constant, there
is no endogenous risk, no amplification and no volatility effects. Therefore,
the rigidity of this model, which allows for a simple solution, also eliminates
any potential endogenous risk. We have to work harder to solve more flexible
models, in which prices are fluctuate.3

However, now at least we have seen how equilibrium conditions can be
translated into formulas that describe how the economy behaves. Next, be-
fore we move on to solve more complicated models, we discuss the techniques
to capture and analyze endogenous risk, investment, general preferences and
asset misallocation.

Returns with Investment and Endogenous Risk.

Consider a productive asset (capital) in the amount kt, which produces
gross output akt dt and evolves according to

dkt
kt

= (Φ(ιt)− δ) dt+ σ dZt, (8)

where ιt is the investment rate per unit of capital and Φ(ιt) is a standard
investment function with adjustment costs, such that Φ(0) = 0, Φ′ > 0 and

3Besides the absence of price effects, another problem with this model is that in the
long run expert sector becomes so large that it overwhelms the whole economy. To see this,
not that the drift of ηt is always positive. This feature is typical of models in which one
group of agents has an advantage over another group - in this case only experts can invest
in the risky asset. It is possible to prevent expert sector from becoming too large through
an additional assumption. For example, Bernanke, Gertler and Gilchrist (1999) and He
and Krishnamurthy (2012) assume that experts are randomly hit by idiosyncratic shocks
that force them to exit. Alternatively, in Brunnermeier and Sannikov (2012), experts have
a higher discount rate than households, and so a higher consumption rate prevents the
expert sector from becoming too large.
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Φ′′ ≤ 0. Thus, in the absence of investment, capital simply depreciates at rate
δ. The concavity of Φ reflects decreasing returns to scale, and for negative
values of ι, corresponds to technological illiquidity. The marginal cost of
capital depends on the rate of investment/disinvestment. Net of investment,
capital generates the consumption good at the rate of (a− ιt)kt dt.

Suppose that the price per unit of capital qt follows the law of motion

dqt
qt

= µqt dt+ σqt dZt, (9)

which, of course, is endogenous in equilibrium. Then, using Ito’s lemma, an
investment in capital generates capital gains at rate

d(ktqt)

ktqt
= (Φ(ιt)− δ + µqt + σσqt ) dt+ (σ + σqt ) dZt.

Then capital earns the return of

drkt =
a− ιt
qt

dt︸ ︷︷ ︸
dividend yield

+ (Φ(ιt)− δ + µqt + σσqt ) dt+ (σ + σqt ) dZt︸ ︷︷ ︸
d(ktqt)
ktqt

, the capital gains rate

. (10)

Thus, generally a part of the risk from holding capital is fundamental, σ dZt,
and a part is endogenous, σqt dZt.

Note that the rate of internal investment ιt does not affect the risk of
capital. The optimal investment rate that maximizes the expected return
satisfies the first-order condition

Φ′(ιt) =
1

qt
.

Optimal Portfolio Choice.

Consider an agent, whose marginal utility of wealth θt follows

dθt
θt

= µθt dt+ σθt dZt. (11)

The process θt can be used to price assets: for an asset with return

drAt = µAt dt+ σAt dZt,
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the following asset-pricing relationship has to hold

0 = µθt − ρ+ µAt + σAt σ
θ
t . (12)

This relationship ensures that if wealth εt is invested in asset A, so that
dεt/εt = drAt , then the discounted marginal utility of incremental wealth
εt+se

−ρsθt+s is a martingale. Equation (12) is important and used often in
analyses of continuous-time heterogeneous-agent models.4

Example 1. Let us see how equation (2) for a log utility agent follows from a
more general relationship (12). Note that the agent’s marginal utility is θt = 1/ct,
where consumption ct is proportional to net worth according to (1). Therefore, if
the volatility of net worth is σnt , then σθt = −σnt . For a risky asset with return rAt ,
(12) implies

0 = µθt − ρ+ µAt − σAt σnt . (13)

For the risk-free asset, whose volatility is 0,

0 = µθt − ρ+ rt. (14)

Subtracting (14) from (13), we get

µAt − rt − σAt σnt = 0 ⇒ µAt − rt
σAt

= σnt ,

where the left hand side is the Sharpe ratio, and the right hand side is the volatility
of net worth.

Example 2. In general, assets can be priced from consumption of risk-averse agents.
Consider an agent with CRRA utility

u(c) =
c1−γ

1− γ
,

whose consumption follows

dct
ct

= µct dt+ σct dZt.

Then, by Ito’s lemma, marginal utility c−γ follows

d(c−γt )

c−γt
=

(
−γµct +

γ(γ + 1)

2
(σct )

2
)
dt− γσct dZt.

4At time t, the agent’s stochastic discount factor (SDF) for payoff received at time
t + s ≥ t is e−ρsθt+s/θt. where ρ is the agent’s discount rate. The SDF can be used to
price assets, also leading to the relationship (12).
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Any risky investment with return drAt , accessible to this agent, must satisfy the
pricing equaiton

0 = −γµct +
γ(γ + 1)

2
(σct )

2 − ρ+ µAt − γσctσAt .
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A Model with Price Effects and Instabilities.

We now illustrate how these principles can be used to solve a more com-
plex model, which we borrow from Brunnermeier and Sannikov (2012). We
will be able to get a number of important takeaways from the model:

1. Normal times vs. crises: Equilibrium dynamics is characterized by a
relatively stable steady state, where the system spends most of the
time, and a crisis regime. In the steady state, experts are adequately
capitalized, and they channel excess profits to payouts. They can easily
absorb usual macro shocks by adjusting payouts, and prices near the
steady state are quite stable. However, an unusually long sequence of
negative shocks causes experts to suffer significant losses, and pushes
the equilibrium into a crisis regime. In the crisis regime, experts are
undercapitalized and constrained. Shocks affect their demand for as-
sets, feed into asset prices. This creates feedback effects, which cause
high endogenous risks.

2. Stationary distribution: High volatility during crisis times may push
the system in a depressed region, where experts’ net worth is close to
0. If that happens, it takes a long time for the economy to recover.
Thus, the system spends a considerable amount of time far away from
the steady state. The stationary distribution is bimodal.

3. Endogenous risk during crises makes assets more correlated.

4. There is a volatility paradox, because risk-taking is endogenous. If the
aggregate risk parameter σ becomes smaller, the economy does not
become more stable. The reason is that experts allow greater leverage,
and pay out profits sooner, in response to lower fundamental risk. Due
to greater leverage, the economy is prone to crises even when exogenous
shocks are smaller. In fact, endogenous risk during crises may actually
be higher when σ is lower.

5. Financial innovations, such as securitization and derivatives hedging,
that allow for more efficient risk-sharing among experts, may make
the system less stable in equilibrium. The reason, again, is that risk-
taking is endogenous. By diversifying idiosyncratic risks, experts tend
to increase leverage, amplifying systemic risks.
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In addition, we can do experiments to see how various policies affect
equilibrium.

While the model is a close to those of BGG and KM, there are two key
differences. First, unlike in KM and BGG, we will be able to conveniently
describe equilibrium dynamics completely, not just near the steady state. In
particular, we uncover the difference between dynamics in normal times and
in crises.

Second, in this model the wealth distribution endogenous: i.e. agents
choose capital cushions/payouts endogenously given the amount of risk in
the system. In contrast, in KM the steady state is pinned down by the
exogenous leverage constraint, and in BGG, by an exogenous parameter that
determines the exit rate of experts. Endogenous wealth distribution delivers
results such as the volatility paradox and the instability due to financial
innovations.

The model is as follows. There are two types of agents - experts and
households. There are two assets: capital in positive net supply, and the
risk-free asset in zero net supply. The financial friction is that neither experts
nor households can issue equity backed by their asset holdings - they can only
borrow through risk-free debt.5

Experts are more productive at managing capital than households. The
experts’ production technology is characterized by (8). Capital held by
households produces a lower dividend stream of akt instead of akt, where
a ≤ a, and depreciates at a faster rate δ ≥ δ. Under their management,

dkt
kt

= (Φ(ιt)− δ) dt+ σ dZt.

Thus, households earn the return of

drkt =
a− ιt
qt

dt︸ ︷︷ ︸
dividend yield

+ (Φ(ιt)− δ + µqt + σσqt ) dt+ (σ + σqt ) dZt︸ ︷︷ ︸
d(qtkt)
qtkt

, the capital gains rate

(15)

when they manage capital.
Regarding preferences, we assume that both experts and households are

risk-neutral, but (1) the experts’ discount rate ρ is higher than that of house-
holds, r, and (2) experts cannot have negative consumption, but households

5Brunnermeier and Sannikov (2012) allows for some equity issuance (see Appendix A),
but here we restrict attention to debt only to simplify exposition.
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can consume negatively. The second assumption simplifies analysis - it im-
plies that households are always financially unconstrained, and that they are
willing to lend and borrow arbitrary amounts at the risk-free rate of r. To
summarize, experts and household maximize, respectively

E
[∫ ∞

0
e−ρtdct

]
, dct ≥ 0, and E

[∫ ∞
0

e−rtdct

]
.

We denote the fraction of capital allocated to experts by ψt ≤ 1, and
look for an equilibrium. That is, we want to characterize how any history
of shocks {Zs, s ≤ t} maps to the price of capital qt, asset allocation ψt and
consumption so that (1) all agents maximize utility and (2) markets clear.

We will solve for the equilibrium in three steps. First, we introduce
the experts’ marginal utility of wealth θt, and use asset pricing and market
clearing conditions to write down equations that stochastic laws of motion
of qt, θt and ψt must satisfy. Second, we focus on the experts’ balance sheets
to write down the law of motion of

ηt =
Nt

qtKt

,

fraction of wealth in the economy that belongs to experts, where Kt is the
total amount of capital in the economy. Third, we look for a Markov equi-
librium, and characterize equations for qt, θt and ψt as functions of ηt. We
solve these equations numerically.

Step 1: The Equilibrium Conditions. From the asset pricing equa-
tion (12), experts price the risk-free asset according to

0 = µθt − ρ+ r, (16)

and capital, with return given by (10), according to

0 = µθt − ρ+
a− ιt
qt

+ Φ(ιt)− δ + µqt + σσqt︸ ︷︷ ︸
E[drkt ]/dt

+(σ + σqt )σ
θ
t . (17)

In equilibrium, the experts’ marginal utility of wealth must always satisfy
θt ≥ 1, and experts consume only when θt = 1. We will see that in equilibrium
experts consume only at one point, when ηt reaches a critical level η∗.

Because households can consume both positive and negative amounts,
their marginal utility of wealth is always 1. If the expected return on the
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risky asset is r according to (15), households are willing to hold some of
it, i.e. ψt can be less than 1. The expected household return from risky
capital cannot exceed r (otherwise they demand an infinite amount of the
risky asset, and markets will not clear), but it can be less than r if ψt = 1.
Thus, we have

a− ιt
qt

+ Φ(ιt)− δ + µqt + σσqt ≤ r, with equality if ψt < 1. (18)

We will use three conditions (16), (17) and (18) to characterize qt, θt and ψt
as functions of ηt. Before we do that, though, we must derive an equation for
the law of motion of ηt = Nt/(qtKt).

Step 2: The Law of Motion of ηt. The law of motion of Nt in this
model is analogous to (5) except that experts invest only wealth ψtqtKt in
capital, and they consume sporadically (only when θt = 1). We have

dNt = ψtqtKt dr
k
t − (ψtqtKt −Nt)r dt− dCt,

where drkt is given by (10). Furthermore,

d(qtKt)

qtKt

= drkt −
a− ιt
qt

dt︸ ︷︷ ︸
capital gains rate

− (1− ψt)(δ − δ) dt︸ ︷︷ ︸
adjustment for households

⇒

d(1/(qtKt))

1/(qtKt)
= −drkt +

a− ιt
qt

dt+ (1− ψt)(δ − δ) dt+ (σ + σqt )
2 dt.

Using Ito’s lemma again,

dηt = (dNt)
1

qtKt

+Nt d

(
1

qtKt

)
+ ψtqtKt(σ + σqt )

−1

qtKt

(σ + σqt ) dt =

(ψt−ηt)(drkt −r dt− (σ+σqt )
2 dt)+ηt

a− ιt
qt

dt+ηt(1−ψt)(δ− δ)−ηtdζt, (19)

where dζt = dCt/Nt is the experts consumption rate.

Step 3: Converting the equilibrium conditions (16), (17) and
(18) and the law of motion (19) into equations for q(η), θ(η) and
ψ(η). This step boils down to multiple applications of Ito’s lemma to convert
equilibrium conditions (16), (17) and (18) as well as the law of motion (19)
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into differential equations for q(η), θ(η) and ψ(η) through multiple applica-
tions of Ito’s lemma. Ito’s lemma allows us to replace terms such as σqt , µ

θ
t ,

etc. with expressions containing the derivatives of q and θ.
The derivations are pretty mechanical, but somewhat lengthy. They can

take a very long time, and blow into unmanageably long expressions if you
do them in the wrong order. I’ll show you a relatively quick, optimized
derivation route.

Before that, let me give a very simple and well-known example to illustrate
the gist of what we have to do.

Example 3. This example is from the well-known endogenous default model of
Leland (1994). Equity holders are sitting on assets whose value follows a geometric
Brownian motion

dVt
Vt

= r dt+ σ dZt (20)

under the risk-neutral measure. Default happens when the value of assets falls
to some value of VB (which is later endogenized). Before default, equity holders
must be paying coupons to debt holders at rate C. In the event of default, equity
holders abandon the assets, and debt holders receive the liquidating value of assets
of αVB, where α ∈ (0, 1).

Under the risk-neutral measure, the expected return of any security must be
r. Thus, if equity Et follows dEt = µEt Et dt+ σEt Et dZt, then we must have6

r = µEt − C/Et. (21)

That is, after paying coupons equity holders must receive an expected return of r.
Suppose we would like to calculate how the value of equity Et depends on the

value of assets Vt. Then we are face a problem that is completely analogous to that
of Brunnermeier and Sannikov (2012) model: We have a law of motion of the state
variable Vt and a relationship (21) that the stochastic motion of Et has to satisfy,
and we would like to characterize Et as a function of Vt.

How can we do this? Easy. Using Ito’s lemma

µEt Et = rVtE
′(Vt) +

1

2
σ2V 2

t E
′′(Vt),

and so (21) becomes

r =
rV E′(V ) + 1

2σ
2V 2E′′(V )

E(V )
− C

E(V )
. (22)

6Unlike in Leland (1994), I assumed here that there are no taxes, so equity holders do
not get any tax shield benefits by paying coupons.
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If function E(V ) satisfies this equation, then the process Et = E(Vt) will satisfy
(21). We are able to go from an equation like (21) to a differential equation (22)
by assuming that the value of equity is a function of the value of assets.

We can solve the second-order ordinary differential equation (ODE) (22) if we

have two boundary conditions. The relevant boundary conditions in the context

of the Leland (1994) model are E(VB) = 0 and that V −E(V )→ C/r as V →∞.

Our problem is similar to that of Leland (1994): we have an equation for
the stochastic law of motion of the state variable (19), as well as conditions
(16), (17) and (18) that processes qt and θt must satisfy. Certainly, the
equations are more complicated than those of Leland (1994), as

• we have two functions q(η) and θ(η) whose derivatives get involved and

• the law of motion of ηt is endogenous (depends on qt, θt and ψt)

However, the basic idea for solving these equations is the same: we must
express highest-order derivatives q′′(η) and θ′′(η), as functions of lower-order
derivatives q(η), q′(η), θ(η), θ′(η) as well as ηt. In the process, we also deter-
mine ψt.

To get started, let us eye-ball the equations we got. First, Ito’s lemma
and (19) lead to

σqt q(η) = q′(η) (ψt − ηt)(σ + σqt )︸ ︷︷ ︸
σηt ηt

, (23)

which has two unknowns, σqt and ψt. We can get another relationship that
ties σqt and ψt by following

σθt =
θ′(η)

θ(η)
(ψt − ηt)(σ + σqt ) (24)

likewise from Ito’s lemma,

µqt = r − a− ιt
qt
− Φ(ιt) + δ − σσqt − (σ + σqt )σ

θ
t (25)

from (17), and checking whether (18) is satisfied, i.e.

HH ≡ a− ιt
qt

+ Φ(ιt)− δ + µqt + σσqt ≤ r (26)

with equality if ψt < 1. Therefore, we can use these equations to solve for ψt,
σqt , σ

θ
t and µqt through the following procedure.
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Procedure 1. Note that the domain for ψt is between ηt (which cor-
responds to no expert leverage and no endogenous risk) and min(1, η +
q(η)/q′(η)) (as ψt → q(η)/q′(η), endogenous risk σqt converges to∞). There-
fore, we guess ψL = η and ψH = min(1, η + q(η)/q′(η)) and repeat the
following loop 30 times.

Guess ψt = (ψL + ψH)/2 and using (23), compute

σqt =
q′(η)

q(η)

(ψt − ηt)σ
1− q′(η)

q(η)
(ψt − ηt)

.

Then do (24), (25) and find HH from (26). If HH > r (i.e. households want
to hold more capital) lower ψt by setting ψH = ψt. Otherwise, set ψL = ψt.
Repeat.

After finding ψt, it is straightforward to find q′′(θ) and θ′′(η) using Ito’s
lemma.

Procedure 2. Using (16), find

µθt = ρ− r (27)

and using (19), compute µηt η, the drift of ηt,
7

(ψt−ηt)
(
Φ(ιt)− δ + µqt + σσqt − r − (σ + σqt )

2
)

+ηt
a− ιt
qt

+ηt(1−ψt)(δ−δ).

Note that we left out the experts’ consumption dζt for reasons that will
become clear later.

Then using Ito’s lemma,

µqtq(η) = µηt ηq
′(η) +

1

2
(σηt )2η2q′′(η), µθtθ(η) = µηt ηθ

′(η) +
1

2
(σηt )2η2θ′′(η).

We can use these expressions to express q′′(η) and θ′′(η) as functions of what
we already computed:

q′′(η) = 2
µqtq(η)− µηt ηq′(η)

(σηt )2η2
and θ′′(η) = 2

µθtθ(η)− µηt ηθ′(η)

(σηt )2η2
. (28)

7A bit of algebra gives a simpler expression

µηt η = −(ψt − ηt)(σ + σqt )(σ + σqt + σθt ) + ηt

(
a− ιt
qt

+ (1− ψt)(δ − δ)
)
.
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To find q′′(η), θ′′(η) as well as ψ(η) from η, q(η), q′(η), θ(η) and θ′(η), we
perform procedures 1 and 2.

Matlab function fnct.m provided with these notes implements this.

Boundary Conditions. We have characterized an the equilibrium via
a system of second-order differential equations for q(η) and θ(η). In order to
solve them, we need appropriate boundary conditions. We discuss now what
these theoretically are, and how to implement them numerically.

The equilibrium domain is given by an interval [0, η∗] over which θ(η) is
decreasing towards

θ(η∗) = 1.

That is, the experts’ marginal utility of wealth increases towards ηt = 0,
when other experts become constrained and profitable opportunities arise.
Consequently, the price of capital q(η) increases from

q(0) = max
ι

a− ι
r − Φ(ι) + δ

over the interval [0, η∗]. Since θ(η) > 1 for η < η∗, in equilibrium experts
refrain from consumption until ηt reaches η∗.

In fact, η∗ plays the role of a reflecting boundary, and consequently

q′(η∗) = θ′(η∗) = 1.

We need a fifth boundary condition in order to solve the system of two
second-order ODEs and also pin down η∗. That condition is

lim
η→0

θ(η) =∞, (29)

i.e. there is a singularity of a particular kind at 0. We’ll discuss next how to
take care of it numerically.

Solving the system of ODE’s numerically. We can use function
fnct.m together with an ODE solver in Matlab, such as ode45, to solve the
system of equations. We need to perform a search, since our boundary con-
ditions are defined at two endpoints of [0, η∗], and we also need to deal with
a singularity at η = 0. The following algorithm performs an appropriate
search and deals with the singularity issue, effectively, by solving the system
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of equations with the boundary condition θ(0) = M, for a large constant M,
instead of (29):

Algorithm. Set

q(0) = max
ι

a− ι
r − Φ(ι) + δ

, θ(0) = 1 and θ′(0) = −1010.

Perform the following procedure to find an appropriate boundary condition
q′(0). Set qL = 0 and qH = 1015. Repeat the following loop 50 times. Guess
q′(0) = (qL + qH)/2. Use Matlab function ode45 to solve for q(η) and θ(η)
on the interval [0, ?) until one of the following events is triggered, either (1)
q(η) reaches the upper bound

qmax = max
ι

a− ι
r − Φ(ι) + δ

,

(2) the slope θ′(η) reaches 0 or (3) the slope q′(η) reaches 0. If integration
has terminated for reason (3), we need to increase the initial guess of q′(0)
by setting qL = q′(0). Otherwise, we decrease the initial guess of q′(0), by
setting qH = q′(0).

At the end, θ′(0) and q′(0) reach 0 at about the same point, which we
denote by η∗. Divide the entire function θ by θ(η∗).8 Then plot the solutions.

Script solve equilibrium.m provided with these notes implements this al-
gorithm, and uses event function evntfct.m to terminate integration. The
solution is economically meaningful even with the boundary condition θ(0) =
M : it corresponds to an assumption that, in the event all experts are wiped
out, any measure-zero set of experts that still has wealth left gets utility M
per dollar of net worth.

Let me finish discussing the algorithm by providing remarks of practical
matter.

Remark 1. The solution procedure works fine as long as η, q(η), q′(η),
θ(η) and θ′(η) belong to the relevant domain. If these values “wander” off too
far from the true solution (e.g. q′(η) becomes negative or q(η) becomes too
large), then computation is no longer meaningful. This can be manifested

8We can do this because whenever functions θ and q satisfy our system of equation, so
do functions Θθ and q for any constant Θ. Because of that, also, it is immaterial what we
set θ(0) to.
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through complex numbers, problems with integration tolerances, etc. One
has to be sensitive towards this problem. Sometimes figuring out the right
domain is a matter of trial and error.

Remark 2. Finding the derivatives of relevant functions, such as q′′(η)
and θ′′(η), often involves solving nonlinear equations without good properties.
In this model, this problem is not huge - it involves finding ψt that can be
performed in multiple ways (e.g. through binary search). In general, however,
one has to think about how to find the right solutions of these equations.

Properties of the Solution. Point η∗ plays the role of the steady
state of our system. The drift of ηt is positive everywhere on the interval
[0, η∗), because experts earn higher returns and refrain from consuming when
ηt < η∗. Thus, the system is pushed towards η∗ by the drift.

It turns out that the steady state is relatively stable, because volatility is
low near η∗. To see this, recall that the amount of endogenous risk in asset
prices, from (23), is given by

σqt =
q′(η)

q(η)

(ψt − ηt)σ
1− q′(η)

q(η)
(ψt − ηt)

.

From the boundary conditions, q′(η∗) = 0, so there is no endogenous risk
near η∗.

However, below η∗, endogenous risk increases as q′(η) becomes larger. As
prices react to shocks, fundamental risk becomes amplified. As we see from
the expression for σqt , this amplification effect is nonlinear, since q′(η) enters
not only the numerator, but also denominator. This happens due to the
feedback effect: an initial shock causes ηt to drop, which leads to a drop
in qt, which hurts experts who are holding capital and leads to a further
decrease in ηt, and so on.

Of course, far in the depressed region, the volatility of ηt, σ
η
t ηt, becomes

low again in this model. This leads to a bimodal stationary distribution of ηt
in equilibrium. The stationary distribution is characterized by Kolmogorov
forward equations. By characterizing asymptotic behavior of the system near
ηt = 0, it is possible to prove analytically that stationary density converges
to ∞ as ηt → 0 (see Brunnermeier and Sannikov (2012)).
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Figure 1: Equilibrium with σ = 25% (black), 10% (blue) and 2.5% (red).

Comparative Statics.

Volatility Paradox refers to the phenomenon that systemic risk can
build up in quiet environments. We can illustrate this phenomenon through
a comparative static on σ.

Figure 1 illustrates comparative static on σ for parameter values ρ = 6%,
r = 5%, a = 11%, a = 5%, δ = 3%, δ = 5%, and Φ(ι) = 1

10
(
√

1 + 20ι− 1).9

The volatility paradox shows itself in a number of metrics. As exogenous
risk declines,

• maximal endogenous risk σqt may increase (as σ drops from 25% to 10%
in Figure 1)

• the volatility σηt near η = 0 rises (and this result can be proved analyt-
ically)

9The investment technology in this example has quadratic adjustment costs: an invest-
ment of Φ + 5Φ2 generates new capital at rate Φ.
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Figure 2: Market illiquidity: a = 2% (blue) 5% (red) and 11% (green).

• from the steady state η∗, it takes less time for volatility σ+σqt to double

• from the steady state, it may take less time to reach the peak of the
crisis ηψ, where experts start selling capital to households10

The reason for the volatility paradox is that payouts, i.e. the location of η∗,
and leverage are endogenous.

Illiquidity. Brunnermeier, Eisenbach and Sannikov (2012) distinguish
three types of illiquidity. First, technological illiquidity, which is captured in
this model by the concavity of function Φ. Second, market illiquidity, which
is captured by the differences a − a and δ − δ, which drive the difference

10However, as σ decreases, the system spends less time in the depressed region, so some
measures of stability improve.
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Figure 3: Technological illiquidity: ι = Φ + 5Φ2 (red) and Φ + 20Φ2 (blue).

between the first-best (expert) and second-best valuations (household) of
assets. There is also funding liquidity.

In this model, the main type of illiquidity that drives endogenous risk,
and makes the system unstable, is the market illiquidity. Figure 2 presents a
comparative static for our model for σ = 2.5% and the same other parameters
as before (except a).

The figure confirms our expectations: higher illiquidity results in higher
endogenous risk, higher earnings retention and lower leverage. What is strik-
ing is the magnitude of effect: for the same level of exogenous risk of 2.5%,
endogenous risk varies anywhere between 4% and 16% in this example.

In contrast, technological illiquidity matters a lot less. If we boost the
adjustment cost parameter by a factor of 4, so that it takes investment of
Φ + 20Φ2 to generate new capital at rate Φ, the equilibrium changes much
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Figure 4: Experts’ impatience: ρ = 5.2% (blue), 6% (red) and 8% (green).

less. In fact, endogenous risk decreases with higher adjustment costs instead
of increasing. The reason is that lower adjustment costs lead to higher in-
vestment and higher prices in booms. The more room there is for prices to
fall, the greater the endogenous risk.

Experts’ Impatience. We assume that experts are less patient than
households, i.e. ρ > r. If ρ = r, then in the long run ηt would converge to 1.

We do not have a perfect economic interpretation of the parameter ρ, but
nevertheless it is interesting to do comparative statics on ρ. One would think
that as ρ decreases towards r, the crises become less volatile and less frequent
as experts accumulate more wealth.

That is only partially true! Crises can definitely become more volatile as
ρ gets closer to r. As Figure 4 illustrates, lower ρ may lead to higher prices
in booms as experts accumulate more wealth. As prices have more room to
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Figure 5: A constraint on payouts (black) vs. the baseline setting (blue).

fall, endogenous risk in crises rises. Financial frictions certainly get weaker
as ρ gets closer to r, but that fuels asset price booms (or “bubbles”).

Policies.

When a policy is imposed, it affects some of the equilibrium equations,
and thus equilibrium dynamics. To predict the effect of a policy, it is useful
to ask the following questions. How does the policy affect the equilibrium
payout rate and leverage? How does it affect asset allocation? How does it
affect asset prices and endogenous risk?

While we can have good intuition about the effects of various policies,
very often formal analysis reveals unintended consequences, which can be
justified ex-post.

A Restriction on Payouts. Figure 5 shows what happens when experts
are not allowed to consume wealth until ηt reaches the level of 0.45 (instead
of η∗ = 0.365 in equilibrium).
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Figure 6: A price floor at q = 1.2 (black) vs. the baseline setting (blue).

This policy fuels a boom in prices, increases endogenous risk during crisis
episodes and reduces welfare within the model. However, it also reduces
the frequency of crises, and so could improve welfare for reasons outside the
model, if there are spillovers from crisis episodes to the economy.

A Price Floor. If a government/central bank can support the price of
illiquid assets, it can potentially increase welfare significantly in environments
with high endogenous risk. Moreover, if exogenous risk is low, then the
probability of having to apply the policy is low and thus the cost of the
policy is low as well.

Note, however, that such a policy leads to higher leverage and earlier
payouts in equilibrium. See Figure 6.
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