Empirical Macro And Finance

Princeton Initiative: Money Macro and Finance September 7th, 2014

> Atif Mian Princeton University

Outline

- 1. Should macro care about finance? The theoretical argument
- 2. Macro-Finance Example: The empirical challenges
 - (i) Identification
 - (ii) Aggregate quantification
 - (iii) General Equilibrium

Simplest NK DSGE Model

$$\mathbb{E}_t[d\ln C(t)] = \gamma[i(t) - \pi(t) - \varrho] dt.$$

$$\ln C(t) = -\gamma \mathbb{E}_t \int_0^\infty \underbrace{[i(t+s) - \pi(t+s)}_{\text{Expected Real Rates}} - \varrho] ds + \underbrace{\mathbb{E}_t \lim_{T \to \infty} \ln C(T)}_{\text{"Long-Run" Consumption}}.$$

$$\pi(t) = f(\ln C(t), u(t), \bullet), \quad \infty > f_1 > 0, \quad \infty > f_2 > 0,$$
 Phillips

$$i(t) = \max\{\overline{i} + \phi_\pi(\pi(t) - \overline{\pi}) + \phi_y(\ln C(t) - \overline{\ln C}), 0\}, \quad \text{[Taylor]}$$

Finance in Macro?

- Introduciton
 - Standard "New-Keyensian" DSGE models used by central banks have no role for debt
 - Focus on price rigidities, and real interest rate expectations.
- However, the real world looks guite different!
 - Debt acts like a state variable
 - Debt, especially household debt, amplifies shocks, including asset price shocks.
 - Bank lending channel is not necessarily the best way to "incorporate finance into macro"

Private debt as a state variable

- "When credit bites back: leverage, business cycles, and crises", by Oscar Jordà, Moritz HP.
 Schularick and Alan M. Taylor
- 14 advanced countries, 1870-2008, 200 recessions
- Debt a state variable ...

Macro-Finance Nexus

- Financial shocks (e.g. asset price movements) in combination with leverage shift the distribution of networth across agents
- The redistribution of net-worth impacts the real economy either via the "investment channel", or via the "consumption channel".
- The two channels are very different in terms of their policy prescription: we may end up recapitalizing the wrong sector.

Macro-Finance Nexus

o Investment Channel

Consumption Channel

Macro-Finance Example

- What was the effect of the extraordinary housing gains between 2002 and 2006 on consumer spending?
 - Benchmark: No / little effect
 - "Cash on hand": wealth shock tied to cash on hand, and strong heterogeneity. (Deaton (1991), Carroll (1992), Harris and Laibson (2002), Kaplan and Violante (2014))
 - Identification
 - Quantification
 - General Equilibrium

Identification

- Focus on the 2002 to 2006 housing boom, exploiting cross-sectional variation across U.S. cities in the extent of house price growth
- Find evidence supporting cash-on-hand theories:
 - Low income households borrow and spend aggressively out of home value shocks
 - High income households completely unresponsive
 - "Housing wealth effect" is a "housing borrowing effect", completely driven by lower half of income distribution

11

Quantification and GE effects

- Average MPC out of housing wealth shocks during 2002 to 2006 housing boom: \$0.10 per \$1.00; almost all of spending driven by borrowing
- Aggregate effect, ignoring GE: 0.08% of GDP in 2003, 0.8% in 2004, 1.3% in 2005 and 2006
- Why didn't economy overheat? General Equilibrium analysis and possibilities toward the end

Data

- Main level of observation in analysis is zip code, where we have annual data on:
 - House prices, income, net worth, credit scores, education levels, mortgage refinancing, auto sales
 - Sample covers 55% of U.S. population main restriction is zipcode level house prices
- CBSA-level: Housing supply elasticity (Saiz)
- Individual-level credit bureau data: MS (2011)

13

(Table 1)					
	N	Mean	SD	10th	90th
Zip level data					
Change in home value (\$000), 2002 to 2006					
			0.047		
Change in annual cash-out refinancing share		0.023		-0.024	
Change in annual no-cash-out refinancing share			0.020		
Change in auto purchases per household, (\$000), 02 to 06					
Housing supply inelasticity					0.865
Adjusted gross income per household (\$000), 2002					
Net worth per household (\$000) 2002		322.4			
Less than high school education fraction, 2000				0.056	
			0.083		0.058
Median home value (\$000), 2002					305.0
Number of households, thousands					
Individual level homeowner data					
Change in debt (\$000), 2002-2006	60858				229.2

Theory and Estimation Strategy

Application to Housing

- Is rise in home values a "cash-on-hand" shock?
- Two questions:
 - How easy is it to borrow out of housing wealth?
 - Does more borrowing lead to spending?

17

OLS Estimation

 Testing consumption concavity in zip-code level data using 2002 to 2006 first differences

```
\Delta y_{zc} = \alpha + \beta * \Delta HomeValue_{zc} + \varepsilon_{zc}
\Delta y_{zc} = \alpha + \beta * \Delta HomeValue_{zc} + \delta * \Delta HomeValue_{zc}
* CashonHand_{\pi,2002} + \nu CashonHand_{\pi,2002} + \varepsilon_{zc}
```

• Dollar on dollar specification to match theory, where Δy_{zc} will be either borrowing or spending

Estimation Challenges

- 1. Fixing permanent income cash-on-hand shocks must be orthogonal to omitted permanent income shocks
- 2. How to measure cash on hand?

19

Estimation Challenges

- Fixing permanent income cash-on-hand shocks must be orthogonal to omitted permanent income shocks
 - · CBSA-level housing supply elasticity instrument
- 2. How to measure cash on hand?
 - Adjusted gross income, net worth, credit scores

First Stag	C/ L/C	(Table 2)	111103	CITCLI	
		Home value change (\$000), 2002-2006			
		86.720** (13.824)			
Median home value, 2002 (\$000)		0.256**			
AGI per household (\$000), 2002				0.647**	0.925
Inelasticity*AGI per household					(0.717) -0.370 (0.908)
			-0.020 (0.012)	-0.052** (0.005)	-0.059* (0.027)
Observations					
				0.038	0.039

IV Estimation

```
\Delta y_{zc} = \alpha^{IV} + \beta^{IV} * \Delta HomeValue_{zc} + \delta^{IV} \\ * \Delta HomeValue_{zc} * CashonHand_{z,2002} + \gamma^{IV} CashonHand_{z,2002} + \varepsilon_{zc} \Delta HomeValue_{zc} \\ = \omega + \eta * Inelasticity_c + \theta * Inelasticity_c * CashonHand_{z,2002} + \vartheta \\ * CashonHand_{z,2002} + \varepsilon_{zc} \Delta HomeValue_{zc} * CashonHand_{z,2002} \\ = \psi + \iota * Inelasticity_c + \kappa * Inelasticity_c * CashonHand_{z,2002} + \lambda \\ * CashonHand_{z,2002} + \zeta_{zc}
```

Results: Marginal Propensity to Borrow

House Price Growth and Cash-Out Refi Share							
	(Table 4	!)					
	OLS	Change in ca OLS	ish-out refina OLS		2002 to 2006 IV		
		0.178**	0.152**	0.128**	0.192**		
(HP growth, 02-06)*(AGI, 2002)							
(HP growth, 02-06)*(\$35K < AGI < \$50K)							
(HP growth, 02-06)*(\$50K < AGI < \$100K)							
Observations	5,163	5,163	5,163	5,163	5,163	5,163	
R-squared	0.526	0.579	0.587	0.520	0.577	0.571	

Home Value Changes and Cash-Out Refi Share						
	_	(Table 5)				
	OLS	OLS	OLS			
\$35K < AGI < \$50K						
\$50K < AGI < \$100K						0.0120**
			(0.0045)			(0.0042)
Constant						
	(0.0051)	(0.0067)	(0.0039)	(0.0088)	(0.0080)	(0.0036)
Observations	5,163	5,163	5,163	5,163	5,163	5,163
R-squared	0.301					

Individual Level Data

- Sample of 60,000 homeowners for which we have debt outstanding and credit scores
- We match to zip-code level house prices to get right hand side variable – allows us to estimate marginal propensity to borrow for homeowners
- Cash-on-hand sorting variable: individual-level credit scores because zip-code level income is not as accurate for individuals

	(Table 6)	•		rrov	
	(2)				
	Chan				
OLS	OLS	OLS	IV	IV	IV
60,856	60,856	60,856	60,856	60,856 0.012	
	OLS 0.088**	(1) (2) Chan OLS OLS 0.088** (0.023) (0.042) -0.971* (0.417) 2.827 (94.207) 0.120** (0.012) (0.025) 13.338** 4.976 (3.168) (4.710)	(1) (2) (3) Change in total debt OLS OLS 0.088** 0.143** 0.575** (0.023) (0.042) (0.156) -0.971* (0.417) 2.827 (94.207) -0.063** (0.018) -3.513 (2.079) 0.120** 0.159** 0.161** (0.012) (0.025) (0.013) 13.338** 4.976 33.765 (3.168) (4.710) (18.617)	(1) (2) (3) (4) Change in total debt (\$000), 2002 to OLS OLS IV 0.088** 0.143** 0.575** 0.188** (0.023) (0.042) (0.156) (0.049) -0.971*	(1) (2) (3) (4) (5) Change in total debt (\$000), 2002 to 2006 OLS OLS OLS IV IV 0.088** 0.143** 0.575** 0.188** 0.206** (0.023) (0.042) (0.156) (0.049) (0.053) -0.971* -1.014 (0.417) (0.664) 2.827 96.155 (94.207) (113.301) -0.063** (0.018) -3.513 (2.079) 0.120** 0.159** 0.161** 0.063* 0.112* (0.012) (0.025) (0.013) (0.026) (0.053) 13.338** 4.976 33.765 12.209** 1.947 (3.168) (4.710) (18.617) (3.981) (6.337)

IVIP	C on	Nev	νAι	ıtos		
		(Table 7)				
	0.016**	0.022**	0.025**	0.017**	0.027**	0.026**
	5.163	(0.180)	(0.195)	(0.135)	(0.278)	(0.205)

Total MPC Using New Autos MPC

- MRS (2013): Total MPC 2006 to 2009 out of housing: \$0.054; on autos: \$0.024
- Apply this ratio to 2003 to 2006 cumulative effect

$$$0.044 * \left(\frac{0.054}{0.024}\right) = $0.099$$

 Homeownership is 63%, implies MPC of \$0.16 for homeowners – if MPC negative for renters, get close to \$0.19 for homeowners

37

Aggregate Effect

 Use four income categories in tables, calculate total spending effect for each income category

$$\sum_{z} (\beta_{I}^{IV} * \Delta HV_{z,I} * Pop_{z,I})$$

- Add across income categories, divide by 55.4%, (fraction of total spending in sample zips)
- Cumulative 02-06 effect: \$461B; 0.08% of GDP in 2003, 0.8% in 2004, 1.3% in 2005 and 2006

More on Aggregate Calculation

- Our estimation used variation in house prices that was orthogonal to permanent income shocks
- Our aggregate calculation implicitly assumes entire 2002 – 2006 house price boom was also *orthogonal* to fundamentals
- Was house price growth from 2002 to 2006 a "bubble" that was unrelated to fundamentals?

39

House Prices and Fundamentals?

General Equilibrium

- This completely ignores general equilibrium effects, which would likely include higher prices
- But we see very little inflation from 2002 to 2006, and in fact we see disinflation in new auto prices → house-price driven spending did not pressure capacity of economy
- We also see permanent decline in retail sales from 2007 to 2013 → Secular stagnation?

