Motivation

- Unified framework to study financial and monetary stability
- **I**: Intermediation (credit) - Inside money
- Value of money endogenous - store of value, liquidity
- In downturns, intermediaries create less inside money
 - Value of outside (base) money goes up
 - Fisher (1933) disinflationary spiral hits borrowers on liability side
 - **Endogenous** money multiplier = f(health of intermediary sector)
- Monetary policy (interest rates, open market operations)
 - Fills in demand for money when money multiplier contracts
 - “Stealth redistribution” from/towards intermediary sector
Some Literature

- Role of money
 - Unit of account affects price setting if prices are sticky
 - Medium of exchange cash in advance constraint, money in utility function
 - Store of value Samuelson, Bewley, Scheinkman-Weiss, Kiyotaki-Moore

- Without intermediaries
 - Inflation in downturns: less money needed since fewer transactions

- With intermediaries — have special role
 - Money view: (Friedman & Schwartz 1963)
 - “Moneyness” of bank liabilities decrease in downturns of intermediation
 - Credit view (demand/supply): (Tobin 1969)
 - BGG, KM, He & Krishnamurthy, BruSan10, Goodfriend 05, Curdia & Woodford 10, ...

- Financial stability + monetary policy
 - Diamond & Rajan (2006), Stein (2012)
Main results

- Passive monetary policy
 - Liquidity Spirals
 - Disinflationary spiral
 - Endogenous risk
 - Redistributional effects

- Active monetary policy
 - Interest rate
 - Current rate
 - Forward guidance
 - Asset purchase programs – open market operation
 - “Stealth” recapitalization
Baseline model without intermediaries

- Macro shock
 \(\lambda = \) arrival rate
- Idiosyncratic shock
 \(\phi = \) expropriation probability

Diagram:
- Government
 - Tax
 - Out-money
- Productive entrepreneurs
- Households
- Risky claims
Baseline model without intermediaries

- **Output:** \[y_t = (a - \iota)k_t \]
- **Capital:** \[dk_t = (\Phi(\iota_t) - \delta)k_t\, dt, \quad \Phi(0) = 0, \Phi' > 0, \Phi'' < 0 \]
- **Shocks**
 - \(\lambda \) arrival rate of macro shock
 - \(\phi \) probability of expropriation
- **Productive entrepreneurs**
 - No net worth – no risk bearing capacity
- **Households**
 \[E\left[\int_0^{\infty} e^{-rt} \log c_t \, dt \right] \]
 - Risky claims towards one entrepreneur
 - Cannot diversify across entrepreneurs
 - Outside money
Baseline model without intermediaries

- Wealth in the economy: \(q_t K_t + p_t K_t \)
- Assume degenerate \(\Phi(i) \) & denote \(g \equiv \Phi(0) - \delta \)

<table>
<thead>
<tr>
<th>Return</th>
<th>Absent shock</th>
<th>shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>On capital (r^K_t)</td>
<td>(\frac{(1 - \tau)a}{q} + g)</td>
<td>Loss with prob (\lambda \Phi)</td>
</tr>
<tr>
<td>On money (r^M_t)</td>
<td>(\frac{\tau a}{p} + g)</td>
<td></td>
</tr>
</tbody>
</table>

- Optimal portfolio choice for households
 - ...
Baseline model without intermediaries

- Optimal portfolio choice for HH
 \[
 \max_x x r_t^K + (1 - x) r_t^M + \lambda \phi \ln(1 - x)
 \]

- FOC:
 \[
 \left(\frac{(1-\tau)a}{q} + g \right) - \left(\frac{\tau a}{p} + g \right) - \lambda \phi \frac{1}{1-x} = 0
 \]

- Market clearing:
 - Capital market: \(x = \frac{q}{q + p} \)
 - Goods market: \(r \left(q + p \right) K = aK \)

- Hence, \(q = \frac{(1-\tau)a}{r + \lambda \phi} \) and \(p = \frac{a \tau r + \lambda \phi}{r \left(r + \lambda \phi \right)} \)

- Value of money even if \(\tau = 0 \) (tax can be even slightly negative)
Frictionless model with \(\lambda = 0 \)

- No risk, hence \(r^M = r^K \)

- \(q = \frac{(1-\tau)\alpha}{r} \) and \(p = \frac{\alpha\tau}{r} \)

- Value of capital is higher
- Value of money is lower
 - Tax backing essential
Two Polar Regimes

<table>
<thead>
<tr>
<th>Regime</th>
<th>Frictions</th>
<th>Value of fiat money</th>
<th>Price of capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Money”</td>
<td>severe</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>“Bliss”</td>
<td>small</td>
<td>low</td>
<td>high</td>
</tr>
</tbody>
</table>
Two Polar Regimes with Intermediaries

<table>
<thead>
<tr>
<th>Regime</th>
<th>Frictions</th>
<th>Value of fiat money</th>
<th>Price of capital</th>
<th>Intermediaries’ capitalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Money”</td>
<td>severe</td>
<td>high</td>
<td>low</td>
<td>poor</td>
</tr>
<tr>
<td>“Bliss”</td>
<td>small</td>
<td>low</td>
<td>high</td>
<td>well</td>
</tr>
</tbody>
</table>

- **Role of intermediaries**
 - Monitoring and thereby reduce friction from ϕ to ϕ
 - Have to take on productive agent’s equity risk to have incentive to monitor
 - Depends on their ability to absorb risk
 - Diversify
 - Maturity/liquidity transformation
Introducing intermediaries

- Monitor
- Diversify
- Maturity/liquidity transformation

Productive entrepreneurs

Government

- Tax
- Out-money

Intermediaries

- Risky claims
- Inside money
- Net worth

Risk claims

households
Adverse shock

- Split in 3 steps
 1. Shock impair assets
 2. Balance sheet shrink
 3. Real value of deposit

Diagram:
- Productive entrepreneurs
- Risky claims
- Intermediaries
- Tax
- Out-money
- Inside money
- Government
- Households
Shrink balance sheet – sell off of assets

Productive entrepreneurs

Government

Tax
Out-money

Intermediaries

Risky claims
money

households
Disinflation effect – value of liabilities expand

Productive entrepreneurs

Government

Tax

Out-money

Intermediaries

Risky claims

money

households

Risky claims
Model with intermediation

Optimal investment

\[
\max_i \Phi(i) - \frac{(1 - \tau)i}{q_t} \quad \Rightarrow \quad \Phi'(i_t) = \frac{(1 - \tau)}{q_t}
\]

Optimal portfolio choice

<table>
<thead>
<tr>
<th>Return</th>
<th>Absent shock</th>
<th>Shock</th>
</tr>
</thead>
</table>
| On capital \(r^K_t \) | \[
\frac{(1 - \tau)(a - \ell_t)}{q_t} + \mu^q_t + \Phi(\ell_t) - \delta \]
| | \((1 - \phi) \frac{q'}{q_t} \) Loss with prob. \(\phi \) \(\frac{q'}{q_t} \) with prob. \((1 - \phi)\) |
| On money \(r^M_t \) | \[
\frac{\tau(a - \ell_t)}{p} + \mu^p_t + \Phi(\ell_t) - \delta \]
| | \(\frac{p'}{p_t} \) |

\(q_t \) and \(p_t \) denote the loan and deposit rates, respectively.
Model with intermediation

<table>
<thead>
<tr>
<th>Return</th>
<th>Absent shock</th>
<th>Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>intermediaries</td>
<td>household</td>
</tr>
<tr>
<td>On capital r_t^K</td>
<td>$(1 - \tau)(a - \iota_t) + \frac{\mu_q}{q_t} + \Phi(\iota_t) - \delta$</td>
<td>$(1 - \phi) \frac{q'_t}{q_t}$</td>
</tr>
<tr>
<td>On money r_t^M</td>
<td>$\tau(a - \iota_t) + \frac{\mu_p}{p} + \Phi(\iota_t) - \delta$</td>
<td>$\frac{p'_t}{p_t}$</td>
</tr>
</tbody>
</table>

- Optimal investment

$$\max_i \Phi(i) - \frac{i}{q_t} \quad \Rightarrow \quad \Phi'(i_t) = 1/q_t$$

- Optimal portfolio choice
Model with intermediation

- Portfolio choice of ... similar to before
 - Households
 - Intermediaries discount rate of $\rho > r$

- Law of motion of net worth

- State variable

$$\eta_t = \frac{N_t}{(q_t + p_t)K_t}$$

- Law of motion (Ito’s lemma)

- Let’s denote $\theta_t \equiv \frac{q_t}{q_t + p_t}$ (fraction of “physical wealth”)
Yuliy can you email me the simulation?
After adverse shock

- Intermediary net worth ↓

- Capital:
 - fire sales, price q ↓
 - Allocation efficiency ↓

- Money:
 - Lending + deposits ↓
 - value of money p ↑
 - Multiplier ↓

- Banking
 - Hit on both sides of balance sheet
 - Externality among banks
 - Competition ↓
Monetary Policy

- So far, “Gold Standard”
 - outside money supply is fixed
 - pays no interest
 - no central bank

- Introduce consul (perpetual) bond
 - pays interest rate in short-term (outside) money

- Monetary Policies
 - Short-term interest rate policy
 - Central bank accepts deposits & pays interest rate (by printing money)
 - E.g. short-term interest rate is lowered when η becomes small
 - Budget neutral policies (at any point in time)
 - Asset purchase program
 - Bond – open market operations (OMO/QE)
Monetary policy

- Government issues long-term (perpetual) bonds
- Controls short-term interest rate ρ_t, value $b_t K_t$ of bonds outstanding (through open-market operations)
- Now there are three assets in the economy

Value $b_t K_t$

Perpetual bonds:
- pay in money (at unit rate)
- endogenous price B_t (in money)

Value $p_t K_t$

Capital

Value $q_t K_t$
• Buy bond, short money:
 – get current yield $1/B_t$
 – get appreciation in the price of the bond μ^B_t (relative to money)
 – pay short-term interest ρ_t
 – but perfectly hedged to fluctuations in money value (as B_t is price in money)

• Thus, $dr^B_t - dr^M_t = 1/B_t + \mu^B_t - \rho_t$ (in the absence of shocks)

• A world portfolio of money and bonds earns return

$$(1 - b_t/p_t) \, dr^M_t + b_t/p_t \, dr^B_t = \tau (a - \iota)/p_t + \mu^p_t + \Phi(\iota_t) - \delta$$

• Combining these two equations, we can derive dr^M_t and dr^B_t separately...
- Bond (relative to money) rises in value by B_t'/B_t
- If money rises in value by X, then a world portfolio of money & bonds rises by

$$X \left(1 - \frac{b_t}{p_t} + \frac{b_t}{p_t} \frac{B_t'}{B_t}\right) = \frac{p_t'}{p_t}$$
- Thus, we can get $X = \ldots$
Equilibrium conditions

- Intermediary portfolio choice (with bonds)

\[
\max_{x,y} x \, \text{dr}_t^K + y \, \text{dr}_t^B + (1 - x - y)\text{dr}_t^M + \lambda \log(x (1 - \phi)q_t'/q_t + y B_t'/B_t X + (1 - x - y) X)
\]

- Market clearing: same as before, except to clear bonds

\[
b_t/(p_t + q_t) = y \eta_t \quad \text{(assuming only intermediaries hold bonds)}
\]

Intermediary aggregate net worth evolves as

\[
dN_t/dt = N_t (x \, \text{dr}_t^K + y \, \text{dr}_t^B + (1 - x - y)\text{dr}_t^M - r) \quad \text{(if no shocks)}
\]

\[
N_t' = N_t (x (1 - \phi)q_t'/q_t + y B_t'/B_t X + (1 - x - y) X) \quad \text{(if shock)}
\]

... a bit more algebra to solve, but logic the same as before
Example

- Parameters
 - $r = 5\%$
 - $a = 10\%$
 - $\delta = 4\%$
 - $\phi = 1\%$
 - $\phi = 20\%$
 - $\iota = 0$ (degenerate)

- No policy (red)
- Policy (black)
 - $\rho(\eta) = 0.25\% + 5\% \times \eta$
Observations

- As interest rate are cut in downturns, bonds held by intermediaries appreciate, this
 - protects intermediaries against shocks
 - increases the supply of asset that can be used as storage (weakens deflation)

- Because downturns are softened, for all η
 - drop in η conditional on a shock \downarrow
 - price of capital \uparrow
 - money multiplier \uparrow
 - price of money \downarrow
 - intermediary allocation to capital \uparrow
 - household allocation to capital \downarrow
 - risk premia (and thus the rate of recovery, conditional on no shocks) \downarrow
Short-term interest rate policy

- Without long-maturity assets changes in short-term interest rate have no effect
 - Interest rate change equals instantaneous inflation change
- With bonds: of all monetary instruments, fraction $\frac{p_t}{p_t + b_t}$ is cash and $\frac{b_t}{p_t + b_t}$ are bonds
 - Deflationary spiral is less pronounced because as η goes down, growing demand for money is absorbed by increase in value of long-term bonds
 - Also, intermediaries hedge risks better by holding long-term bonds
 - However, intermediaries also have greater incentives to increase leverage/risk-taking ex-ante
- Effectiveness of monetary policy depend on maturity structure (duration) of government debt
<table>
<thead>
<tr>
<th></th>
<th>New Keynesian</th>
<th>I-Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key friction</td>
<td>Price stickiness & ZLB</td>
<td>Financial friction</td>
</tr>
<tr>
<td>Driver</td>
<td>Demand driven as firms are obliged to meet demand at sticky price</td>
<td>Misallocation of funds increases incentive problems and restrains firms/banks from exploiting their potential</td>
</tr>
<tr>
<td>Monetary policy</td>
<td>Affect HH’s intertemporal trade-off</td>
<td>Ex-post: redistributional effects between financial and non-financial sector</td>
</tr>
<tr>
<td></td>
<td>Nominal interest rate impact real interest rate due to price stickiness</td>
<td>Ex-ante: insurance effect leading to moral hazard in risk taking (bubbles) - Greenspan put -</td>
</tr>
<tr>
<td></td>
<td>Redistributional between firms which could (not) adjust price</td>
<td></td>
</tr>
<tr>
<td>Time consistency</td>
<td>Wage stickiness</td>
<td>Moral hazard</td>
</tr>
<tr>
<td></td>
<td>Price stickiness + monopolistic competition</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- Unified macro model to analyze both
 - Financial stability
 - Monetary stability
 - Liquidity spirals
 - Fisher deflation spiral

- Capitalization of banking sector is key state variable
 - Price stickiness plays no role (unlike in New Keynesian models)

- Monetary policy rule
 - Affects money supply
 - Redistributional monetary transmission channel
 - “stealth recapitalization”
 - Time inconsistency problem
 - “Greenspan put”
After a negative shock

- Intermediary net worth ↓

- Capital:
 - fire sales, price q ↓
 - Allocation efficiency ↓

- Money:
 - Lending + deposits ↓
 - value of money p ↓
 - Multiplier ↓

- Banking
 - Hit on both sides of balance sheet
 - Externality among banks
 - Competition ↓

- Intermediaries
 - Capital: fire sales, price q, Allocation efficiency
 - Money: Lending + deposits, value of money, Multiplier
 - Banking: Hit on both sides of balance sheet, Externality among banks, Competition