PRINCETON INITIATIVE 2014 Macro, Money and Finance Markus Brunnermeier and Yuliy Sanniko

Princeton University

Macro-literature on Frictions

- 1. Net worth effects:
 - a. Persistence:
 - b. Amplification:
 - c. Instability:

Carlstrom & Fuerst

- Bernanke, Gertler & Gilchrist
- Brunnermeier & Sannikov
- 2. Volatility effects: impact credit quantity constraints
 - a. Margin spirals : Brunnermeier & Pederson
 - b. Endogenous constraints: Geanakoplos
- 3. Demand for liquid assets & Bubbles "self insurance"
 a. OLG, Aiyagari, Bewley, Krusell-Smith, Holmstrom-Tirole,...
 4. Financial intermediaries & Theory of Money

DEMAND FOR LIQUID ASSETS, BUBBLES, M. BRUNNERMEIER, T. EISENBACH, AND Y. SANNIKOY

Princeton University

Demand for Liquid Assets

- So far: Technological and market illiquidity create time amplification and instability
 - Net worth losses lead depress to price of capital q_t , ...
 - Liquidity spirals emerge when price volatility interacts with debt constraints
- Now: Focus on demand for liquid instruments
 - No amplification effects: perfect techn. liquidity due to reversibility of investment
 - constant price of capital q
 - Borrowing constraint = collateral constraint
 - Steps: Introduce (i) idiosyncratic risk, (ii) aggregate risk, (iii) amplification (revisited)

Outline – Demand for Liquid Assets

- Deterministic Fluctuations
 - Overlapping generations
 - Completing markets with liquid asset
- Idiosyncratic Risk
 - Precautionary savings
 - Constrained efficiency
- Aggregate Risk
 - Bounded rationality
- Amplification Revisited

Overlapping Generations

- Samuelson (1958) considers an infinite-horizon economy with two-period lived overlapping agents
 Population growth rate n
- Preferences given by $u(c_t^t, c_{t+1}^t)$
 - Pareto optimal allocation satisfies $\frac{u_1}{u_2} = 1 + n$
- OLG economies have multiple equilibria that can be Pareto ranked

OLG: Multiple Equilibria

- Assume $u(c_t^t, c_{t+1}^t) = \log c_t^t + \beta \log c_{t+1}^t$ • Endowment $y_t^t = e, y_{t+1}^t = 1 - e$
- Assume complete markets and interest rate r
- Agent's FOC implies that $\frac{c_{t+1}^t}{\beta c_t^t} = 1 + r$

• For r = n, this corresponds to the *Pareto solution*

- For $r = \frac{1-e}{\beta e} 1$, agents will consume their endowment
- Autarky solution is clearly *Pareto inferior*

OLG: Completion with Durable Asset

- Autarky solution is the unique equilibrium implemented in a sequential exchange economy
 - Young agents cannot transfer wealth to next period
 - ... related to Chris Sims' lecture
- A durable asset provides a <u>store of value</u>
 - Effective store of value reflects *market liquidity*
 - Pareto solution can be attained as a competitive equilibrium in which the price level grows at same rate as the population, i.e. $b_{t+1} = (1+n)b_t$
 - Old agents trade durable asset for young agents' consumption goods

OLG: Production

- Diamond (1965) introduces a capital good and production
 - Constant-returns-to-scale production $Y_t = F(K_t, L_t)$
- Optimal level of capital is given by the *golden rule*,
 i.e. f'(k*) = n
 - Here, lowercase letters signify per capita values
- Individual (and firm) optimization implies that

$$\frac{u_1}{u_2} = 1 + r = 1 + f'(k)$$

• It is possible that $r < n \Rightarrow k > k^* \Rightarrow$ Pareto inefficient

OLG: Production & Efficiency

- Diamond recommends issuing government debt at interest rate r
- Tirole (1985) introduces a rational bubble asset trading at price b_t

•
$$b_{t+1} = \frac{1+r_{t+1}}{1+n}b_t$$

- Both solutions crowd out investment and increase r
 - If baseline economy is inefficient, then an appropriately chosen debt issuance or bubble size can achieve Pareto optimum with r = n

OLG: Crowding Out vs. Crowding In

- Depending on the framework, government debt and presence of bubbles can have two opposite effects
 - <u>Crowding out</u> refers to the decreased investment to increase in supply of capital
 - <u>Crowding in</u> refers to increased investment due to improved risk transfer
 - Woodford (1990) explores both of these effects

Outline – Demand for Liquid Assets

- Deterministic Fluctuations
 - Overlapping generations
 - Completing markets with liquid asset
- Idiosyncratic Risk
 - Precautionary savings
 - Constrained efficiency
- Aggregate Risk
 - Bounded rationality
- Amplification Revisited

Precautionary Savings

- Consumption smoothing implies that agents will save in high income states and borrow in low income states
 - If markets are incomplete, agents may not be able to efficiently transfer consumption between these outcomes
- Additional precautionary savings motive arises when agents cannot insure against uncertainty
 - Shape of utility function
 - Borrowing constraint a
- $a_t \geq -b$

 $u^{\prime\prime\prime}$

PCS 1: Prudence

- Utility maximization $E_0[\sum_{t=0}^{\infty} \beta^t u(c_t)]$
 - Budget constraint: $c_t + a_{t+1} = e_t + (1+r)a_t$
 - Standard Euler equation: $u'(c_t) = \beta(1+r)E_t[u'(c_{t+1})]$
- If u''' > 0, then Jensen's inequality implies:

$$\frac{1}{\beta(1+r)} = \frac{E_t[u'(c_{t+1})]}{u'(c_t)} > \frac{u'(E_t[c_{t+1}])}{u'(c_t)}$$

- Marginal value is greater due to uncertainty in c_{t+1}
- Difference is attributed to precautionary savings
- <u>Prudence</u> refers to curvature of u', i.e. $P = -\frac{u'''}{u''}$

PCS 2: Borrowing constraint + Idiosync. Risk

- With incomplete markets and borrowing constraints, agents engage in precautionary savings in the presence of idiosyncratic income shocks
- Following Bewley (1977), mean asset holdings E[a] result from individual optimization

IR: Exchange Economy

- In an exchange economy, aggregate supply of assets must be zero
 - Huggett (1993)
- Equilibrium interest rate always satisfies $r < \rho$

IR: Production Economy

- Aiyagari (1994) combines the previous setup with standard production function F(K,L)
 - Constant aggregate labor L
- Demand for capital is given by $f'(k) \delta = r$
 - Efficient level of capital $f'(k^*) \delta = \rho \Rightarrow k^* < k$

IR: Production Economy

- Aiyagari (1995) shows that a tax on capital earnings can address this efficiency problem
 - This decreases the net interest rate received by agents
- Government debt does not work "perfectly"
 - No finite amount of government debt will achieve $r = \rho$

Constrained Inefficiency

- Bewley-Aiyagari economies result in competitive allocations that are not only Pareto inefficient, but are also *constrained* Pareto inefficient
 - Social planner can achieve a Pareto superior outcome even facing same market incompleteness
- This result can be attributed to *pecuniary externalities*
 - In competitive equilibrium, agents take prices as given whereas a social planner can induce wealth transfers by affecting relative prices
 - For incomplete markets: Stiglitz (1982), Geanakoplos-Polemarcharkis (1986)
 - For borrowing/collateral constraints: many papers

Outline – Demand for Liquid Assets

- Deterministic Fluctuations
 - Overlapping generations
 - Completing markets with liquid asset
- Idiosyncratic Risk
 - Precautionary savings
 - Constrained efficiency
- Aggregate Risk
 - Bounded rationality
- Amplification Revisited

Aggregate Risk

- Krusell, Smith (1998) introduce aggregate risk into the Aiyagari framework
 - Aggregate productivity shock that follows a Markov process z_t and $Y_t = z_t F(K_t, L_t)$
- Aggregate capital stock determines equilibrium prices r_t, w_t
 - However, the evolution of aggregate stock is affected by the distribution of wealth since poor agents may have a much higher propensity to save
 - Tracking whole distribution is practically impossible

AR: Bounded Rationality

- Krusell, Smith assume agents are boundedly rational and approximate the distribution of capital by a finite set of moments M
 - Regression R^2 is relatively high even if #M = 1
- This result is strongly dependent on low risk aversion and low persistence of labor shocks
 - Weak precautionary savings motive except for poorest agents
 - Since wealth-weighted averages are relevant, this has a negligible effect on aggregate quantities

Outline – Demand for Liquid Assets

- Deterministic Fluctuations
 - Overlapping generations
 - Completing markets with liquid asset
- Idiosyncratic Risk
 - Precautionary savings
 - Constrained efficiency
- Aggregate Risk
 - Bounded rationality
- Amplification Revisited

Liquidity Concepts

Financial instability arises from the fragility of liquidity
 <u>A</u>

Technological liquidity

Reversibility of investment

Market liquidity

 Specificity of capital Price impact of capital sale

Funding liquidity

- Maturity structure of debt
 - Can't roll over short term debt
- Sensitivity of margins
 - Margin-funding is recalled

Liquidity mismatch determines severity of amplification

aturity mismatch

Amplification Revisited

- Investment possibility shocks
 - Production possibilities:
 - Investment possibilities:
- Interim liquidity shocks
 - Exogenous shock:
 - Endogenous shock:
- Preference shocks
 - No aggregate risk:
 - Aggregate risk:

Scheinkman & Weiss (1986) Kiyotaki & Moore (2008)

Holmstrom & Tirole (1998) Shleifer & Vishny (1997)

Diamond & Dybvig (1983) Allen & Gale (1994)

Holmstrom & Tirole 98

- Three period model with $t \in \{0,1,2\}$
- Entrepreneurs with initial wealth A
 - Investment of I returns RI in t = 2 with probability p
 - Interim funding requirement ρI at t = 1 with $\rho \sim G$
 - Extreme technological illiquidity, as investment is worthless if interim funding is not provided
 - Moral hazard problem
 - Efficiency requires $\rho \leq \rho_1 \equiv pR \Rightarrow$ continuation
 - Only $\rho \leq \rho_0 < \rho_1$ of funding can be raised due to manager's private benefit, i.e. principal-agent conflict

Shleifer & Vishny 97

- Fund managers choose how aggressively to exploit an arbitrage opportunity
- Mispricing can widen in interim period
 - Investors question investment and withdraw funds
 - Managers must unwind position when mispricing is largest, i.e. most profitable
 - Low market liquidity due to limited knowledge of opportunity
- Fund managers predict this effect, and thus limit arbitrage activity
 - Keep buffer of liquid assets to fund withdrawals

Diamond & Dybvig 83

- Three period model with $t \in \{0,1,2\}$
- Continuum of ex-ante identical agents
 - Endowment of 1 in t = 0
 - Idiosyncratic preference shock, i.e. probability λ that agent consumes in t = 1 and probability 1λ that agent consumes in t = 2
- Preference shock is not observable to outsiders
 - Not insurable, i.e. incomplete markets

DD: Investment

- Good can be stored without cost
 Payoff of 1 in any period
- Long term investment project
 - Payoff of R > 1 in t = 2
 - Salvage value of $r \leq 1$ if liquidated early in t = 1
 - Market for claims to long-term project at price p
- Trade-off between return and *liquidity*
 - Investment is subject to *technological illiquidity*, i.e. $r \leq 1$
 - Market liquidity is represented by interim price p

Allen & Gale

• AG extend DD framework by adding aggregate risk

• Here, $\lambda = \lambda_H$ with probability π and $\lambda = \lambda_L < \lambda_H$ with probability $1 - \pi$

- Agents observe realization of aggregate state and idiosyncratic preference shock at t = 1
 - After resolution of uncertainty, agents can trade claims to long-term project at $p_s \in \{p_H, p_L\}$
 - Asset's market liquidity will vary across states
- For simplicity, assume r = 0

Creating Info-Insensitive Securities

 Debt contract payoff – prior distribution of cash flow

- Asymmetric info (lemons') problem kicks in
 - No more rollover
- Maturity choice:
 - Short-term debt: distribution shrinks (less info-sensitity)

cash flow

Creating Info-Insensitive Securities

 Informational value of signal is extremely low (in flat part of contract payoff

Creating Info-Insensitive Securities

Increasing the information sensitivity of debt

- Now signal is very valuable
- Asymmetric info (lemons') problem kicks in
 - No more rollover
- Maturity choice:
 - Short-term debt: distribution shrinks (less info-sensitity)