MACRO, MONEY AND FINANCE MARKUS BRUNNERMEIER AND YULIY SANNIKOY

Princeton University

Motivation

- Aim: Bridge the gap between
 - Macro/monetary research
 - Finance research
- Financial sector helps to
 - overcome financing frictions and
 - channels resources
 - creates money

... but

- Credit crunch due to adverse feedback loops & liquidity spirals
 - Non-linear dynamics
- New insights to monetary and international economics

- Price stabilityMonetary policy
- Financial stability Macroprudential policy
- Fiscal debt sustainability Fiscal

- Short-term ← inter-action → action
- Policy rule (terms structure)

- Reserve requirements
 - Capital/liquidity ← action > requirements
- Collateral policy Margins/haircuts
- Capital controls

Systemic risk – a broad definition

- Systemic risk build-up during (credit) bubble
 ... and materializes in a crisis
 - "Volatility Paradox" \rightarrow contemp. measures inappropriate
- Spillovers/contagion externalities
 - Direct contractual: domino effect (interconnectedness)
 - Indirect: price effect (fire-sale externalities)
 credit crunch, liquidity spirals

Adverse GE response

Brunnermeier, Eisenbach & Sannikov

amplification, persistence

Minsky moment – Wile E. Coyote Effect

Methodology – relation to finance

Verbal Reasoning (qualitative)

Fisher, Keynes, ...

Macro

- Growth theory
 - Dynamic (cts. time)
 - Deterministic

- Introduce stochastic
 - Discrete time
 - Brock-Mirman, Stokey-Lucas
 - DSGE models

Finance

Portfolio theory

- Static
- Stochastic

- Introduce dynamics
- Continuous time
 - Options Black Scholes
 - Term structure CIR
 - Agency theory Sannikov

Cts. time macro with financial frictions

Pre-crisis Macro emphasis

- Price/wage rigidities
- Expectations of
 - cash flow
 - "the" short-term interest rate

Post crisis Macro&Finance

- Financial frictions
- Endogenous risk/volatility e.g. runs, sudden stops, ...
- Risk premia time varying

 Δ price = $f(\Delta E[\text{future cash flows}], \Delta risk premia)$

- Expectation hypothesis
- Credit spread = expected default
- Euler equation
 - Substitution effects

- Term risk premia
- Credit risk premia
- Wealth redistribution
 - Income/wealth effect

Heterogeneous agents + frictions

- Lending-borrowing/insuring since agents are different
- Poor-rich
- Productive
- Less patient
- Less risk averse
- More optimistic

Limited direct lending due to frictions

- Rich-poor
- Less productive
- More patient
- More risk averse
- More pessimistic

- p_sMRS_s different even after transactions
- Wealth distribution matters! (net worth of subgroups)
- Financial sector is not a veil

LIQUIDITY — PERSISTENCE & AMPLIFICATION MARKUS BRUNNERMEIER AND YOUR SANNIKOV

Princeton University

Liquidity Concepts

Financial instability arises from the fragility of liquidity

Technological liquidity

Reversibility of investment

Market liquidity

Specificity of capital
 Price impact of capital sale

Funding liquidity

- Maturity structure of debt
 - Can't roll over short term debt
- Sensitivity of margins
 - Margin-funding is recalled

 Liquidity mismatch determines severity of amplification, (sunspot) runs, ... "strategic complementarities"

Types of Funding Constraints

- Equity constraint
 - "Skin in the game constraint"
- + Debt constraints
 - Costly state verification a la Townsend
 - Borrowing cost increase as net worth drops
 - Collateral/leverage/margin constraints
 - Quantity constraint on borrowing
 - Incomplete contracts a la Hart-Moore
 - Commitment problem
 - Credit rationing a la Stiglitz-Weiss
 - Not binding (precautionary buffer)

BruSan, He-Krishnamurthy

CF, BGG

KM, BP, G

Comment: Constraints vs. incomplete markets

Constraints vs. Incomplete Markets

Constraints vs. Incomplete Markets

Constraints vs. Incomplete Markets

Constraints & Incomplete Markets

Amplification vs. inefficiency

Amplification/ multiplicity:
 Strategic complementarities

Inefficiencies: externalities

Macro-literature on Frictions

1. Net worth effects:

a. Persistence: Carlstrom & Fuerst

b. Amplification: Bernanke, Gertler & Gilchrist "Kocherlakota critique" & "single shock critique"

2. Volatility effects: impact credit quantity constraints

a. Instability: Brunnermeier & Sannikov

b. Margin spirals : Brunnermeier & Pederson

c. Endogenous constraints: Geanakoplos

- 3. Demand for liquid assets & Bubbles "self insurance"
 - a. OLG, Aiyagari, Bewley, Krusell-Smith, Holmstrom-Tirole,...
- 4. Financial intermediaries & Theory of Money

Amplification & Instability - Overview

- Bernanke & Gertler (1989), Carlstrom & Fuerst (1997)
 - Perfect (technological) liquidity, but persistence
 - Bad shocks erode net worth, cut back on investments, leading to low productivity & low net worth of in the next period

Amplification & Instability - Overview

- Bernanke & Gertler (1989), Carlstrom & Fuerst (1997)
 - Perfect (technological) liquidity, but persistence
 - Bad shocks erode net worth, cut back on investments, leading to low productivity & low net worth of in the next period
- - Technological/market illiquidity
 - KM: Leverage bounded by margins; BGG: Verification cost (CSV)
 - Stronger amplification effects through prices (low net worth reduces leveraged institutions' demand for assets, lowering prices and further depressing net worth)
- Brunnermeier & Sannikov (2010)
 - Instability, volatility dynamics, volatility paradox, Kocherlakota critique
- Brunnermeier & Pedersen (2009), Geanakoplos
 - Volatility interaction with margins/haircuts (leverage)

Persistence

- Even in standard real business cycle models, temporary adverse shocks can have long-lasting effects
- Due to feedback effects, persistence is much stronger in models with financial frictions
 - Bernanke & Gertler (1989)
 - Carlstrom & Fuerst (1997)
- Negative shocks to net worth exacerbate frictions and lead to lower capital, investment and net worth in future periods

Costly State Verification

- Key friction in previous models is <u>costly state</u> <u>verification</u>, i.e. CSV, a la Townsend (1979)
- Borrowers are subject to an idiosyncratic shock
 - Unobservable to lenders, but can be verified at a cost
- Optimal solution is given by a contract that resembles standard debt

CSV: Contracting

- Competitive market for capital
 - Lender's expected profit is equal to zero
 - Borrower's optimization is equivalent to minimizing expected verification cost
- Financial contract specifies:
 - Debt repayment for each reported outcome
 - Reported outcomes that should be verified

CSV: Optimal Contract

- Incentive compatibility implies that
 - Repayment outside of VR is constant
 - Repayment outside of VR is weakly greater than inside
- Maximizing repayment in VR reduces the size and thus the expected verification cost

Carlstrom & Fuerst

- Output is produced according to $Y_t = A_t f(K_t)$
- Fraction η of entrepreneurs and $1-\eta$ of households
 - Only entrepreneurs can create new capital from consumption goods
- Individual investment yields ωi_t of capital
 - ullet Shock is given by $\omega \sim G$ with $E[\omega] = 1$
 - This implies consumption goods are converted to capital one-to-one in the aggregate
 - No technological illiquidity!

CF: Costly State Verification

- lacktriangle Households can verify ω at cost μi_t
 - Optimal contract is debt with audit threshold $\overline{\omega}$
 - Entrepreneur with net worth n_t borrows i_t-n_t and repays $\min\{\omega_t,\overline{\omega}\}\times i_t$
- Auditing threshold is set by HH breakeven condition

$$\left[\int_0^{\overline{\omega}} (\omega - \mu) dg(\omega) + \left(1 - G(\overline{\omega}) \right) \overline{\omega} \right] i_t q_t = i_t - n_t$$

- Here, q_t is the price of capital
- No positive interest (within period borrowing) and no risk premium (no aggregate investment risk)

CF: Persistence & Dampening

- Negative shock in period t decreases N_t
 - ullet This increases financial friction and decreases I_t
- Decrease in capital supply leads to
 - Lower capital: K_{t+1}
 - Lower output: Y_{t+1}
 - Lower net worth: N_{t+1}
 - Feedback effects in future periods t + 2, ...
- Decrease in capital supply also leads to
 - Increased price of capital q_t
 - Dampening effect on propagation of net worth shock

Dynamic Amplification

- Bernanke, Gertler and Gilchrist (1999) introduce technological illiquidity in the form of nonlinear adjustment costs to capital
- Negative shock in period t decreases N_t
 - This increases financial friction and decreases I_t
- In contrast to the dampening mechanism present in CF, now decrease in capital demand (not supply) leads to
 - Decreased price of capital due to adjustment costs
 - Amplification effect on propagation of net worth shock

Bernanke, Gertler & Gilchrist

- BGG assume separate investment sector
 - This separates entrepreneurs' capital decisions from adjustment costs
- $\Phi(\cdot)$ represents *technological illiquidity*
 - Increasing and concave with $\Phi(0) = 0$

$$K_{t+1} = \Phi\left(\frac{I_t}{K_t}\right)K_t + (1 - \delta)K_t$$

FOC of investment sector

$$\max_{I_t} \{q_t K_{t+1} - I_t\} \Rightarrow q_t = \Phi' \left(\frac{I_t}{K_t}\right)^{-1}$$

BGG: Entrepreneurs

- Entrepreneurs alone can hold capital used in production (of consumption good)
- At time t, entrepreneurs purchase capital for t+1
 - To purchase k_{t+1} , an entrepreneur borrows $q_t k_{t+1} n_t$
 - Here, n_t represents entrepreneur net worth
- Assume gross return to capital is given by ωR_{t+1}^k
 - Here $\omega \sim G$ with $E[\omega] = 1$ and ω i.i.d.
 - R_{t+1}^k is the endogenous aggregate equilibrium return

BGG: Persistence & Amplification

- Shocks to net worth N_t are persistent
 - They affect capital holdings, and thus N_{t+1} , ...
- Technological illiquidity for capital "demanders" now introduces amplification effect
 - Decrease in capital leads to reduced price of capital from $q_t = \Phi' \left(\frac{I_t}{K_t}\right)^{-1}$
 - Lower price of capital further decreases net worth

Kiyotaki & Moore 97

- Kiyotaki, Moore (1997) adopt a
 - collateral constraint instead of CSV
 - market illiquidity second best use of capital
- Output is produced in two sectors, differ in productivity
- Aggregate capital is fixed, resulting in extreme technological illiquidity
 - Investment is completely irreversible
- Durable asset has two roles:
 - Collateral for borrowing
 - Input for production

KM: Amplification

- Static amplification occurs because fire-sales of capital from productive sector to less productive sector depress asset prices
 - Importance of market liquidity of physical capital
- Dynamic amplification occurs because a temporary shock translates into a persistent decline in output and asset prices

KM: Agents

- Two types of infinitely-lived risk neutral agents
- Mass η of productive agents
 - Constant-returns-to-scale production technology yielding $y_{t+1} = ak_t$
 - Discount factor $\beta < 1$
- Mass 1η of less productive agents
 - Decreasing-returns-to-scale production $y_{t+1} = F(k_t)$
 - Discount factor $\underline{\beta} \in (\beta, 1)$
 - Note: Now, we have two different production functions!

KM: Frictions

- Since productive agents are less patient, they will want to borrow b_t from less productive agents
 - However, friction arises in that each productive agent's technology requires his individual human capital
 - Productive agents cannot pre-commit human capital
- This results in a collateral constraint

$$Rb_t \le q_{t+1}k_t$$

 Productive agent will never repay more than the value of his asset holdings, i.e. collateral

KM: Demand for Assets

- Since there is no uncertainty, a productive agent will borrow the maximum quantity and will not consume any of the output
 - Budget constraint: $q_t k_t b_t \le (a + q_t)k_{t-1} Rb_{t-1}$
 - Demand for assets: $k_t = \frac{1}{q_t \frac{q_{t+1}}{R}} [(a + q_t)k_{t-1} Rb_{t-1}]$
- Unproductive agents are not borrowing constrained
 - $R = \underline{\beta}^{-1}$ and asset demand is set by equating margins
 - Demand for assets: $R=\frac{\underline{F'(\underline{k}_t)}+q_{t+1}}{q_t}$ Rewritten to $\frac{1}{R}\underline{F'(\underline{k}_t)}=q_t-\frac{1}{R}q_{t+1}$

KM: Equilibrium

- With fixed supply of capital, market clearing requires $\eta K_t + (1 \eta) \underline{K}_t = \overline{K}$
 - This implies $M(K_t) \equiv \frac{1}{R} \underline{F}' \left(\frac{\overline{K} \eta K_t}{1 \eta} \right) = q_t \frac{1}{R} q_{t+1}$
 - Note that $M(\cdot)$ is increasing
- Iterating forward, we obtain: $q_t = \sum_{s=0}^{\infty} \frac{1}{R^s} M(K_{t+s})$

KM: Steady State

- In steady state, productive agents use tradable output a to pay interest on borrowing:
- This implies that steady state price q^* must satisfy:

$$q^* - \frac{1}{R}q^* = a$$

Further, steady state capital K* must satisfy:

$$\frac{1}{R} \underline{F}' \left(\frac{\overline{K} - \eta K^*}{1 - \eta} \right) = a$$

• This reflects inefficiency since marginal products correspond only to tradable output as opposed to total a+c, where c is non-tradable fraction

KM: Productivity Shock

- Log-linearized deviations around steady state:
 - $\ ^{\square}$ Unexpected one-time shock that reduces production of all agents by factor $1-\Delta$
- %-change in assets for given change in asset price:

$$\widehat{K}_{t} = -\frac{\xi}{1+\xi} \left(\Delta + \frac{R}{R-1} \widehat{q}_{t} \right), \ \widehat{K}_{t+s} = \frac{\xi}{1+\xi} \widehat{K}_{t+s-1}$$

$$\frac{1}{\xi} = \frac{d \log M(K)}{d \log K} |_{K=K^*} \text{ (elasticity)}$$

- Reduction in assets comes from two shocks:
 - Lost output Δ
 - Capital losses on previous assets $\frac{R}{R-1} \hat{q}_t$, amplified by leverage
 - $\frac{\xi}{1+\xi}$ terms dampens effect since asset can reallocated

KM: Productivity Shock

- Change in price for given change in assets:
 - Log-linearize the equation $q_t = \sum_{s=0}^{\infty} \frac{1}{R^s} M(K_{t+s})$
 - This provides: $\hat{q}_t = \frac{1}{\xi} \frac{R-1}{R} \sum_{s=0}^{\infty} \frac{1}{R^s} \widehat{K}_{t+s}$
- Combining equations:

Multiplier	static	dynamic
$\widehat{K}_t =$	-Δ	$-\frac{1}{(\xi+1)(R-1)}\Delta$
$\hat{q}_t =$	$-\frac{(R-1)}{R}\frac{1}{\xi}\Delta$	$-\frac{1}{R}\frac{1}{\xi}\Delta$

• Static effect results from assuming $q_{t+1}=q^{st}$

"Kocherlakota critique"

- Amplification for negative shocks differs from positive shocks
 - In Kocherlakota (2000) optimal scale of production (positive shock does not lead to expansion)
- Amplification is quantitatively too small
 - Capital share is only 1/3 and hence GDP is too small
 - Cordoba and Ripoll (2004)
 - Needs sizeable capital share plus
 - Low intertemporal substitution

"Single Shock Critique"

- Critique: After the shock all agents in the economy know that the economy will deterministically return to the steady state.
 - Length of slump is deterministic (and commonly known)
 - No safety cushion needed
 - In reality an adverse shock may be followed by additional adverse shocks
 - Build-up extra safety cushion for an additional shock in a crisis

Macro-literature on Frictions

1. Net worth effects:

a. Persistence: Carlstrom & Fuerst

b. Amplification: Bernanke, Gertler & Gilchrist"Kocherlakota critique"

2. Volatility effects: impact credit quantity constraints

a. Instability: Brunnermeier & Sannikov

b. Margin spirals : Brunnermeier & Pederson

c. Endogenous constraints: Geanakoplos

- 3. Demand for liquid assets & Bubbles "self insurance"
 - a. OLG, Aiyagari, Bewley, Krusell-Smith, Holmstrom-Tirole,...
- 4. Financial intermediaries & Theory of Money

BruSan14: Instability & Non-Linear Effects

- Previous papers only considered log-linearized solutions around steady state
- Brunnermeier & Sannikov (2014) build a continuous time model to study full dynamics
 - Show that financial system exhibits inherent instability due to highly non-linear effects
 - These effects are asymmetric and only arise in downturn
 - A shock can be followed by future shocks
 - Length of slump is uncertain
- Agents choose a capital cushion
 - Mitigates moderate shocks near steady state
 - High volatility away from steady state

Macro-literature on Frictions

1. Net worth effects:

a. Persistence: Carlstrom & Fuerst

b. Amplification: Bernanke, Gertler & Gilchrist "Kocherlakota critique"

2. Volatility effects: impact credit quantity constraints

a. Instability: Brunnermeier & Sannikov

b. Margin spirals : Brunnermeier & Pederson

c. Endogenous constraints: Geanakoplos

- 3. Demand for liquid assets & Bubbles "self insurance"
 - a. OLG, Aiyagari, Bewley, Krusell-Smith, Holmstrom-Tirole,...
- 4. Financial intermediaries & Theory of Money

Credit Rationing – Quantity Rationing

- Credit rationing refers to a failure of market clearing in credit
 - In particular, an excess demand for credit that fails to increase market interest rate
 - Pool of loan applicants worsens
 - Stiglitz & Weiss (1981) show how asymmetric information on risk can lead to credit rationing

Brunnermeier-Pedersen: Margin Spiral

- For collateralized lending, debt constraints are directly linked to the volatility of collateral
 - Constraints are more binding in volatile environments
 - Feedback effect between volatility and constraints
- These <u>margin spirals</u> force agents to delever in times of crisis
 - Collateral runs

counterparty bank run

Multiple equilibria

BP: Margins – Value at Risk (VaR)

- How are margins set by brokers/exchanges?
 - Value at Risk: $Pr(-(p_{t+1} p_t) \ge m) = 1\% = \pi$

BP: Leverage and Margins

- Financing a long position of x^{j+}_t>0 shares at price p^j_t=100:
 - Borrow \$90\$ dollar per share;
 - Margin/haircut: m^{j+}_t=100-90=10
 - Capital use: \$10 x^{j+}t
- Financing a short position of x^{j-}_t>0 shares:
 - Borrow securities, and lend collateral of 110 dollar per share
 - Short-sell securities at price of 100
 - Margin/haircut: m^{j-}_t=110-100=10
 - Capital use: \$10 x^{j-}t
- Positions frequently marked to market
 - payment of $x_{j_t}^{j_t}(p_{t-1}^{j_t})$ plus interest
 - margins potentially adjusted more later on this
- Margins/haircuts must be financed with capital:

$$\sum_{j} (x^{j+}_{t} m^{j+}_{t} + x^{j-}_{t} m^{j-}_{t}) \leq W_{t}$$
, where $x^{j} = x_{t}^{j+} - x_{t}^{j-}$

with perfect cross-margining: $M_t(x_t^1, ..., x_t^J) \leq W_t$

BP: Liquidity Spirals

- Borrowers' balance sheet
 - Loss spiral net worth drops
 - Net wealth > α x for asym. info reasons
 - constant or increasing leverage ratio

Initial Losses

e.g. credit

- Margin/haircut spiral
 - Higher margins/haircuts
 - No rollover
 - redemptions
 - forces to delever
- Mark-to-market vs. mark-to-model
 - worsens loss spiral
 - improves margin spiral

BP: Margin Spiral – Increased Volatility

Brunnermeier, Eisenbach & Sannikov

BP: Margin Spirals - Intuition

1. Volatility of collateral increases

- Permanent price shock is accompanied by higher future volatility (e.g. ARCH)
 - Realization how difficult it is to value structured products
- Value-at-Risk shoots up
- Margins/haircuts increase = collateral value declines
- Funding liquidity dries up
- Note: all "expert buyers" are hit at the same time, SV 92

2. Adverse selection of collateral

- As margins/ABCP rate increase, selection of collateral worsens
- SIVs sell-off high quality assets first (empirical evidence)
- Remaining collateral is of worse quality

BP: Model Setup

- Time: t=0,1,2
- Asset with final asset payoff v follows ARCH process

•
$$v_t = v_{t-1} + \Delta v_t = v_{t-1} + \sigma_t \varepsilon_t$$
, where $v_t \coloneqq E_t[v]$

- $\sigma_{t+1} = \sigma + \theta |\Delta v_t|$
- Market illiquidity measure:

$$\Lambda_t = |v_t - p_t|$$

- Agents:
 - *Initial customers* with supply

$$S(z, v_t - p_t)$$
 at t=1,2

Complementary customers' demand $D(z, v_2 - p_2)$ at t=2

$$D(z, v_2 - p_2)$$
 at t=2

- Risk-neutral dealers provide immediacy and
 - face capital constraint:

$$xm(\sigma,\Lambda) \leq W(\Lambda) \coloneqq \max\{0,B + x_0(E[v_1] - \Lambda)\}$$

Finαnciers set margins

cash "price" of stock holding

BP: Financiers' Margin Setting

- Margins are set based on Value-at-Risk
- Financiers do not know whether price move is due to
 - Likely, movement in fundamental (based on ARCH process)
 - Rare, Selling/buying pressure by customers who suffered asynchronous endowment shocks.

$$m_1^+ = \Phi^{-1}(1-\pi)\sigma_2 = \bar{\sigma} + \bar{\theta} |\Delta p_1| = m_1^-$$
 Recall $\sigma_{t+1} = \sigma + \theta |\Delta v_t|$

Margin Spiral – Increased Volatility

Margin Spiral – Increased Volatility

Margin Spiral – Increased Volatility

Data Gorton and Metrick (2011)

Copeland, Martin, Walker (2011)

Margins **stable** in tri-party repo market 1,000

- contrasts Gorton and Metrick
- no general run on certain collateral

2,500-2,000-1,500-1,000-500-

Figure 6: Stacked Graph of Collateral

Oct-08 Jan-09 Apr-09 Jul-09 Oct-09 Jan-10 Apr-10

Note: July 17, 2008 excluded because no data was available for BNYM on that date. Red lines correspond to important market events. From left to right: 9/15/08 (Lehman), 10/14/08 (9 banks receive aid), 10/16/08 (UBS), 11/23/08 (Citi), 1/16/09 (B of A), 1/24/09 (Citi).

Run (non-renewed financing) only on select **counterparties**

- Bear Stearns (anecdotally)
- Lehman (in the data)

Like 100% haircut... (counterparty specific!)

Figure 7: Median Haircuts by Asset Type

Note: Red lines correspond to important market events. From left to right: 9/15/08 (Lehman), 10/14/08 (9 banks receive aid), 10/16/08 (UBS), 11/23/08 (Citi), 1/16/09 (B of A), 1/24/09 (Citi).

Bilateral and Tri-party Haircuts?

Differences in Median Haircuts

BP: Multiple Assets

- Dealer maximizes expected profit per capital use
 - Expected profit

$$E_1[v^j] - p^j = \Lambda^j$$

Capital use

m^j

- Dealers
 - Invest only in securities with highest ratio $\Lambda^{\rm j}/{\rm m}^{\rm j}$
- Hence, illiquidity/margin ratio $\Lambda^{\mathrm{j}}/\mathrm{m}^{\mathrm{j}}$ is constant

BP: Commonality & Flight to Quality

- Commonality
 - Since funding liquidity is driving common factor
- Flight to Quality
 - Quality=Liquidity
 Assets with lower fund vol. have better liquidity
 - Flight liquidity differential widens when funding liquidity becomes tight

BP: Flight to Quality

m²=Volatility of Security2 = 2 > 1 = Volatility of Security1=m¹

Macro-literature on Frictions

1. Net worth effects:

a. Persistence: Carlstrom & Fuerst

b. Amplification: Bernanke, Gertler & Gilchrist "Kocherlakota critique"

2. Volatility effects: impact credit quantity constraints

a. Instability: Brunnermeier & Sannikov

b. Margin spirals : Brunnermeier & Pederson

c. Endogenous constraints: Geanakoplos

- 3. Demand for liquid assets & Bubbles "self insurance"
 - a. OLG, Aiyagari, Bewley, Krusell-Smith, Holmstrom-Tirole,...
- 4. Financial intermediaries & Theory of Money